TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of biofilms by nearambient pressure X-ray photoelectron spectroscopy N2 - The XPS information depth of approximately 10 nm is in the same size range as the outer membrane of the gram-negative bacteria, which makes XPS a suitable tool for determining the elemental composition of the bacterial surface and monitor changes caused by outer stress like dehydration or exposure to antimicrobials. However, bacteria are inherently in a hydrated state, and therefore only compatible to ultra-high vacuum after extensive sample preparation, which may degrade the sample constituents. This issue is addressed by the development of near-ambient pressure (NAP)-XPS, which enables bacteria and biofilms to be characterised in their native wet state. Artificial biofilms, bacteria and biofilms of Escherichia coli have been characterised with the laboratory NAP-XPS instrument EnviroESCA from SPECS GmbH, at pressures ranging from high vacuum to 12 mbar, and in both humid and dry environment. By studying biological samples in their native wet state, new insight about composition and transport of drugs through cell membranes and the extracellular polymeric substance (EPS) of biofilms can be obtained. T2 - Royal Society of Chemistry Twitter Conference CY - Worldwide (online conference) DA - 06.03.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of bacteria and biofilms by NAP-XPS N2 - The XPS information depth of approximately 10 nm is in the same size range as the outer membrane of the gram-negative bacteria, which makes XPS a suitable tool for determining the elemental composition of the bacterial surface and monitor changes caused by outer stress like dehydration or exposure to antimicrobials. However, bacteria are inherently in a hydrated state, and therefore only compatible to ultra-high vacuum after extensive sample preparation, which may degrade the sample constituents. This issue is addressed by the development of near-ambient pressure (NAP)-XPS, which enables bacteria and biofilms to be characterised in their native wet state. Artificial biofilms, bacteria and biofilms of Escherichia coli have been characterised with the laboratory NAP-XPS instrument EnviroESCA from SPECS GmbH, at pressures ranging from high vacuum to 12 mbar, and in both humid and dry environment. By studying biological samples in their native wet state, new insight about composition and transport of drugs through cell membranes and the extracellular polymeric substance (EPS) of biofilms can be obtained. In this contribution, the latest progress on biofilm characterisation by NAP-XPS will be presented, and measurement capabilities and limitations will be discussed. T2 - Die Frühjahrstagung der Deutsche Physikalische Gesellschaft CY - Berlin, Germany DA - 12.03.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dietrich, P. A1 - Beblo-Vranesevic, K. A1 - Kjærvik, Marit A1 - Unger, Wolfgang A1 - Schwibbert, Karin A1 - Hardie, K. A1 - Brown, J. T1 - XPS surface analysis of bacterial samples N2 - This application note presents how EnviroESCA can be used to analyze bacterial samples under near ambient pressure conditions in various states of hydration using different levels of humidity. Such investigations of bacterial cell wall surfaces in their hydrated state are essential for studying biological interfaces at work. The use of innovative near-ambient pressure (NAP-)XPS instrumentation allows the detailed analysis of irregularly-surfaced biofilms. NAP-XPS enables the surface analysis of bacterial samples in their natural hydrated state without complex sample preparation techniques such as freeze-drying or fast-freezing, which are needed for XPS analysis in ultrahigh vacuum. KW - Near ambient pressure XPS KW - Biofilms PY - 2018 UR - http://www.enviroai.com/uploads/1/0/2/8/102861712/xps_surface_analysis_of_bacillus_subtilis_biofilms_final.pdf IS - Application Note #000399 SP - 1 EP - 5 CY - Berlin AN - OPUS4-44588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Unger, Wolfgang T1 - Quantitative biocide profile measurements by calibrated NAP-XPS N2 - Progress update for the EMPIR-project MetVBadBugs- Quantitative measurement and imaging of drug-uptake by bacteria with antimicrobial resistance. T2 - MetVBadBugs 26 M project meeting CY - South Mimms, UK DA - 05.07.2018 KW - Biofilms KW - Alginate KW - Antibiotics KW - E. coli KW - XPS PY - 2018 AN - OPUS4-45402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of Escherichia coli under various conditions by near-ambient pressure XPS N2 - Bacteria are inherently in a hydrated state and therefore not compatible to ultra-high vacuum techniques such as XPS without prior sample preparation involving freeze drying or fast freezing. This has changed with the development of near-ambient pressure (NAP)-XPS, which makes it possible to characterise the bacterial surface with minimal sample preparation. This paper presents NAP-XPS measurements of Escherichia coli under various NAP conditions: at 11 mbar in a humid environment, at 2 mbar after drying in the chamber, pre-dried at 4 mbar, and at 1 mbar after overnight pumping at 10^−4 mbar. The high-resolution spectra of carbon, nitrogen, and oxygen are presented and found to be in general agreement with XPS measurements from freeze-dried and fast-frozen bacteria. However, it was found that the amount of carbon components associated with polysaccharides increases relative to aliphatic carbon during drying and increases further after overnight pumping. This implies that drying has an impact on the bacterial surface. T2 - European conference on applications of surface and interface analysis (ECASIA'17) CY - Montpellier, France DA - 24.09.2018 KW - Bacteria KW - E. coli KW - NAP-XPS PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-454047 SN - 0142-2421 SN - 1096-9918 VL - 50 IS - 11 SP - 996 EP - 1000 PB - John Wiley & Sons CY - Hoboken, New Jersey, USA AN - OPUS4-45404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin T1 - Surface characterisation of biological samples by near-ambient pressure XPS N2 - A presentation held for the seminar "Ausgewählte analytische Methoden der Physik" hosted by Prof. Birgit Kanngießer at TU Berlin. The first part focus on depth-dependent XPS-measurements (XPS, synchrotron HAXPES) to obtain a concentration profile of iodine in an artificial biofilm. In the second part, NAP-XPS measurements of various bacterial samples are presented. T2 - Forschungsseminar "Ausgewählte analytische Methoden der Physik", TU Berlin CY - Berlin, Germany DA - 17.07.2018 KW - Biofilms KW - Alginate KW - Agarose KW - HAXPES KW - NAP-XPS PY - 2018 AN - OPUS4-45505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Unger, Wolfgang A1 - Thissen, A. A1 - Dietrich, P. T1 - Progress on characterisation of biofilms by NAP-XPS N2 - Progress talk on characterisation of biofilms by NAP-XPS in the framework of the MetVBadBugs EURAMET-project T2 - MetVBadBugs 24 M project meeting CY - Turin, Italy DA - 06.02.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Near-ambient pressure XPS of hydrated Escherichia coli samples with EnviroESCA N2 - This application note presents how EnviroESCA can be used to analyze E. coli biofilms on silicon under near ambient pressure conditions in various states of hydration. Such investigations of the outer bacterial cell surface in their hydrated state are essential for studying biological interfaces at work. KW - Biofilms KW - E. coli KW - NAP-XPS PY - 2018 UR - http://www.enviroai.com/uploads/1/0/2/8/102861712/nap_xps_of_escherichia_coli_samples.pdf IS - Application Note #000400 SP - 1 EP - 4 CY - Berlin, Germany AN - OPUS4-45720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Petrik, S. A1 - Unger, Wolfgang T1 - Surface characterisation of bacteria and biofilms by NAP-XPS N2 - INTRODUCTION: X-ray photoelectron spectroscopy (XPS) provides elemental and chemical information from the outermost ~10 nm of the sample surface. This is in the same order of magnitude as the thickness of the outer bacterial membrane of gram-negative bacteria, as well as outer membrane molecules as exopolysaccharides and lipopolysaccharides, commonly attached to the cell surface. With the development of near-ambient pressure (NAP)-XPS, bacteria can be analysed with minimal sample preparation. This is in contrast to ultra-high vacuum XPS, where complex sample preparation including freeze-drying or fast-freezing is required, a treatment that may introduce artefacts or degrade the biological constituents. METHODS: EnviroESCA is a laboratory based NAP-XPS instrument, equipped with a monochromated Al Kα radiation source and a differentially pumped energy analyser connected to an exchangeable sample environment, a basic build-up is displayed in Figure 1c. It allows for measurements in various gas-atmospheres, including water vapor, which makes it possible to characterise bacteria and other biological samples close to their natural, hydrated state. Artificial model-biofilms of exopolysaccharides, planktonic Pseudomonas Fluorescens and biofilms of Escherichia Coli have been characterised in hydrated and dried state. RESULTS: High-resolution XPS-spectra from carbon, oxygen, nitrogen and phosphorous can be assigned to carbohydrates, lipids and proteins in general agreement with litterature2,3. Especially the carbon 1s peak is of interest (see Figure 1a and b), which reveal components originating from aliphatic carbon, single bounded carbon and double bounded/acetal carbon. A series of measurements of an E. coli biofilm from 11 mbar in humid environment to 1 mbar air reveal changes in the C1s peak, which suggests that the bacterial surface undergo substantial change. DISCUSSION & CONCLUSIONS: Bacterial samples can be analysed under near-ambient pressure conditions in various states of hydration with minimal sample preparation. Such investigations of bacterial cell wall surfaces are essential for studying biological interfaces at work. T2 - Biointerfaces International Conference CY - Zurich, Switzerland DA - 14.08.2018 KW - Bacteria KW - E. coli KW - NAP-XPS KW - Biofilms KW - Alginate PY - 2018 AN - OPUS4-45717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Risinggård, H. K. A1 - Cooil, S. A1 - Mazzola, F. A1 - Hu, D. A1 - Kjaervik, Marit A1 - Østli, E. R. A1 - Patil, N. A1 - Preobrajenski, A. A1 - Ewans, A. D. A1 - Breiby, D. W. A1 - Trinh, T. T. A1 - Wells, J. W. T1 - Degradation of the chemotherapy drug 5-fluorouracil on medical-grade silver surfaces N2 - The degradation of the chemotherapy drug 5-fluorouracil by a non-pristine metal surfaces is studied.Using density functional theory, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy we show that the drug is entirely degraded by medical-grade silver surfaces, already at body temperature,and that all of the fluorine has left the molecule, presumably as HF. Remarkably, this degradation is even more severe than that reported previously for 5-fluorouracil on a pristine monocrystalline silver surface(in which case 80% of the drug reacted at body temperature) [1]. We conclude that the observed reaction is due to a reaction pathway, driven by H to F attraction between molecules on the surface, which results in the direct formation of HF; a pathway which is favoured when competing pathways involving reactive Ag surface sites are made unavailable by environmental contamination. Our measurements indicate that realistically cleaned, non-pristine silver alloys, which are typically used in medical applications, can result in severe degradation of 5-fluorouracil, with the release of HF – a finding which may have important implications for the handling of chemotherapy drugs. KW - Surface science KW - Chemotherapy KW - DFT KW - Photoemission KW - Fluorouracil KW - Silver PY - 2018 U6 - https://doi.org/10.1016/j.apsusc.2017.11.221 SN - 0169-4332 VL - 435 SP - 1213 EP - 1219 PB - Elsevier CY - Amsterdam, The Netherlands AN - OPUS4-43450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -