TY - JOUR A1 - Klimakow, Maria A1 - Klobes, Peter A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Characterization of mechanochemically synthesized MOFs N2 - The compound MOF-14 (Cu3(BTB)2, BTB = 4,4',4''-benzenetribenzoate) was synthesized by ball milling and characterized by powder X-ray diffraction (XRD). The raw material was activated using an efficient single washing step to ensure a free pore access. Nitrogen adsorption measurements were carried out to determine the specific areas of the samples before and after activation. To interpret the activation process in terms of blocking effects in the micropore channels, NLDFT evaluations (Nonlocal Density Functional Theory) of the MOF-14 nitrogen isotherms were carried out. In connection with the appearance of additional hysteresis loops in the nitrogen isotherms, calculations of the mesopore size distribution were performed using the method of Barret, Joyner, and Halenda (BJH). The results are compared to those of a structurally analogue MOF, namely HKUST-1 (Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylate). This comparison showed notable differences regarding the impact of the activation step on the formation of mesopores and their size distribution. KW - Metal-organic frameworks KW - Mechanochemistry KW - Gas adsorption KW - Specific surface area KW - MOF-14 PY - 2012 DO - https://doi.org/10.1016/j.micromeso.2011.11.039 SN - 1387-1811 SN - 1873-3093 VL - 154 SP - 113 EP - 118 PB - Elsevier CY - Amsterdam AN - OPUS4-25597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -