TY - CONF A1 - Jauregui Rozo, Maria T1 - Transfer of the modes of action from polymer materials to glass-fiber-reinforced plastics: flame retardancy – fire resistance – post-fire mechanics N2 - Fire resistance of fiber-reinforced polymers (FRPs) has been an important area of research for many years since FRPs are mainly used in the transportation and construction sectors. This study presents the fire behavior, and mechanical performance between the flame retarded pure epoxy resin and flame retarded glass-fiber composites before, during, and after a fire event. This enables a deeper understanding of the transferability of flame retardants on composite materials. T2 - 19th European Meeting on Fire Retardant Polymeric Materials (FRPM23) CY - Dübendorf, Switzerland DA - 26.06.2023 KW - Glass-fiber Reinforced Polymer KW - Flame Retardancy KW - Fire Behavior KW - Flammability KW - Modes of Action PY - 2023 AN - OPUS4-57846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jauregui Rozo, Maria T1 - Transfer of the Flame Retardancy and Post-Fire Mechanics from Polymer Materials to Glass-Fiber-Reinforced Plastics N2 - This study presents the processability, fire behavior, and mechanical performance between the flame retarded pure epoxy resin and flame retarded glass-fiber-reinforced plastic before, during, and after a fire event. This enables a deeper understanding of the transferability of flame retardants, modes of action, char enhancement, and flame inhibition on composite materials T2 - Twenty-third international conference on composite materials (ICCM23) CY - Belfast, United Kingdom DA - 31.07.2023 KW - Glass-Fiber Reinforced Polymer KW - Flame Retardancy KW - Mechanical Testing KW - Epoxy Resin KW - Modes of Action PY - 2023 AN - OPUS4-58086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - Adapting intumescent/low-melting glass flame-retardant formulations for transfer to glass-fiber-reinforced composites and post-fire mechanical analysis N2 - The residual post-fire mechanical properties of fiber-reinforced epoxy composites are influenced by their fire residues after burning. This study uses intumescent/low-melting glass flame retardants to tailor fire residues in epoxy resin. Processibility of prepregs and their quality are analysed for transfer of the flame-retardant epoxy resins to layered glass-fiber reinforced composites. Minimal effects were found on the pre-fire flexural strengths of the composites due to low loading of the flame retardants. However, when transferred to glass-fiber reinforced composites, the fire residues diminish significantly. Further studies are required to improve theoretical and experimental estimations of the post-fire mechanics of the composites. T2 - SAMPE Europe Conference 2023 CY - Madrid, Spain DA - 03.10.2023 KW - Fire residue KW - Prepregs KW - Mechanics KW - Lightweight materials KW - Composites KW - Flame retardancy PY - 2023 SP - 1 EP - 7 AN - OPUS4-59138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Inasu, S. A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - A systematic investigation of the transfer of polyphosphate/inorganic silicate flame retardants from epoxy resins to layered glass fiber-reinforced composites and their post-furnace flexural properties N2 - The systematic transfer of solvent-free, additive flame retardant (FR) formulations from epoxy resins to glass fiber-reinforced epoxy composites (GFRECs) through prepregs is difficult. Additionally, obtaining data on their post-fire mechanics is often challenging. Utilizing melamine polyphosphate (MPP), ammonium polyphosphate (APP), and silane-coated ammonium polyphosphate (SiAPP) FRs with low-melting inorganic silicates (InSi) in an 8:2 proportion and 10% loading by weight in a diglycidyl ether of bisphenol A (DGEBA) resin, a systematic investigation of the processing properties, room-temperature mechanics, and temperature-based mechanics of the systems was performed. The resin was cured with a dicyandiamide hardener (DICY) and a urone accelerator. The results revealed no substantial impact of these FRs at the current loading on the resin's glass transition temperature or processability. However, the fire residues from cone calorimetry tests of the composites containing FRs were found to be only 15-20% of the thickness of the resins, implying a suppression of intumescence upon transfer. At room temperature, the decrease in the flexural modulus for the composites containing FRs was negligible. Exposure of the composites in a furnace at 400°C as a preliminary study before ignition tests was shown to cause significant flexural moduli reductions after 2.5 min of exposure and complete delamination after 3 min making further testing unviable. This study emphasizes the need for future research on recovering modes of action upon transfer of FR formulations from resins to composites. Based on the challenges outlined in this investigation, sample adaptation methods for post-fire analysis will be developed in a future study. KW - DGEBA KW - Prepregs KW - Glass fiber-reinforced composites KW - Post-fire testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605239 DO - https://doi.org/10.1002/pc.28416 SN - 1548-0569 SN - 0272-8397 VL - 45 IS - 10 SP - 9389 EP - 9406 PB - Wiley AN - OPUS4-60523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Inasu, S. A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - Investigating the changing dynamics of processing, temperature-based mechanics, and flame retardancy in the transfer of ammonium polyphosphate/inorganic silicate flame retardants from epoxy resins to glass fiber composites N2 - Although numerous investigations study the improvement of flame retardancy of epoxy resins using additives, maintaining the flame retardant (FRs) modes of action present in the resins upon transfer to composites is challenging. In this study, ammonium polyphosphate (APP) and inorganic silicate (InSi) are loaded at 10%, 30%, and 50% by weight, in a diglycidyl ether of bisphenol A (DGEBA) resin cured with dicyandiamide and transferred to bidirectional (BD) glass fiber (GF) composites. Although a 50% loading of the FRs impacts the curing kinetics of the resin system, the effect on the glass transition temperature of the resin system remains negligible compared to reactive FRs in the state of the art integrated into the resin's chemical structure. Increasing the FR content improved the heat release characteristics in both the resins and composites. However, the charring mode of action is completely suppressed in the formulation with 10% APP + InSi. A 30% concentration of the FRs restored the charring action in the composite and the GFs provide increased protective layer action upon transfer to the composites. This study highlights the importance of accounting for the changing dynamics related to processing and flame retardancy upon transferring FRs from resins to composites. KW - Composites KW - Flame retardance KW - Resins KW - Synthesis and processing techniques PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-610484 DO - https://doi.org/10.1002/app.55988 SN - 1097-4628 VL - 141 IS - 39 SP - 1 EP - 18 PB - Wiley CY - New York, NY AN - OPUS4-61048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sunder, Sruthi A1 - Jauregui Rozo, Maria A1 - Ruckdäschel, Holger A1 - Schartel, Bernhard T1 - Investigating the trade-off effects of inorganic phosphate/silicate flame retardant content on the fire performance and post-fire flexural mechanics of epoxy/glass fiber composites N2 - Considering the existing challenges involved in the transfer of flame retardant (FR) formulations from epoxy (EP) resins to glass fiber reinforced composites (GFRCs), obtaining data on the post-fire flexural properties of such composites is even more challenging as this involves balancing test parameters with potential composite delamination. In this study, solvent-free FR additives: ammonium polyphosphate (APP), and inorganic silicate (InSi) were added at 10, 30% and 50% w/w loading to a Bisphenol A diglycidyl ether (DGEBA)-dicyandiamide (DICY)-Urone resin matrix. These resin formulations were transferred to bidirectional (BD) glass fiber composites via prepregs. A novel, but facile approach was developed to prepare the composite samples for furnace tests at 400 oC. The composites were also subjected to fire exposure at different heat fluxes and times via a bench-scale test and subsequently tested via three-point bending. At approximately 3.5% P content, the FRs significantly improve the fire performance of both the resins and composites. However, they also degrade the systems’ pre- and postfire flexural modulus and strength. Therefore, improving the flame-retardant mode of action of the FRs in the composites, contrastingly reduces their structural integrity post-fire leading to a trade-off effect. T2 - ECCM21 – 21st European Conference on Composite Materials CY - Nantes, France DA - 02.07.2024 KW - Flame retardants KW - Post-fire KW - Epoxy KW - Glass fiber composites KW - Prepregs PY - 2024 SP - 1 EP - 7 AN - OPUS4-60788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sunder, Sruthi A1 - Jauregui Rozo, Maria A1 - Ruckdäschel, Holger A1 - Schartel, Bernhard T1 - Adapting intumescent/low-melting glass flame-retardant formulations for transfer to glass-fiber-reinforced composites and postfiremechanical analysis N2 - The residual post-fire mechanical properties of fiber-reinforced epoxy (EP) composites are influenced by their fire residues after burning. This study uses intumescent/low-melting glass flame retardants (FRs) to tailor fire residues in epoxy resin. Processibility of prepregs, and their quality are analysed for transfer of the flame-retardant epoxy resins to layered glass-fiber reinforced composites (GFRCs). Minimal effects were found on the pre-fire flexural strengths of the composites due to low loading of the FRs. However, when transferred to GFRCS, the fire residues diminish significantly. Process, testing, and material adaptations are required to improve theoretical and experimental estimations of the post-fire mechanics of the composites. T2 - SAMPE Europe Conference 2023 Madrid - Spain CY - Madrid, Spain DA - 03.10.2023 KW - Fire residue KW - Prepregs KW - Mechanics PY - 2023 AN - OPUS4-60789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jauregui Rozo, Maria A1 - Sunder, Sruthi A1 - Ruckdäschel, Holger A1 - Schartel, Bernhard T1 - Weaving Through Fire And Force: Fire Behavior and Modes of Action between Epoxy Resin and Glass Fiber Composites N2 - This project aims to investigate the fire behavior, fire stability, and modes of action in flame retardancy of phosphorus-based flame-retardant polymeric materials in fiber-reinforced composites and compare them to epoxy resins. T2 - BASF International Summer Course 2024 CY - Ludwigshafen, Germany DA - 04.08.2024 KW - Flame retardants KW - Fire behavior KW - Fire stability PY - 2024 AN - OPUS4-60790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jauregui Rozo, Maria A1 - Sunder, S: A1 - Ruckdäschel, H. A1 - Schartel, Bernhard T1 - Char, gas, and action: Transfer of the flame-retardant modes of action in epoxy resins and their fiber-reinforced composites N2 - Flame retardants are often developed for epoxy resins and then transferred into their fiber-reinforced composites with uncertain results. Understanding this transfer in detail represents a critical scientific challenge. This study systematically compares epoxy resins with their glass-fiber reinforced composites, focusing on bisphenol A diglycidyl ether with the hardener dicyandiamide, the flame retardants melamine polyphosphate, ammonium polyphosphate, and silane ammonium polyphosphate, along with inorganic silicate. The research investigates changes in pyrolysis (thermogravimetry), flammability (UL 94, limiting oxygen index), and fire behavior (cone calorimeter) while also examining the flame-retardant modes of action and overall fire performance. The findings reveal that alterations in the amount of fuel, thermal properties, melt flow, and protective layer significantly impact ignition, flammability, and fire load, with a critical reduction in carbonaceous char within the composites preventing intumescence. This study quantifies the effects and provides a fundamental scientific understanding of the complex transfer process of flame retardants from resins to composites, offering essential insights that are of major importance for developing more effective flame-retardant materials. KW - Glas fibers KW - Epoxy resins KW - Fire behavior KW - Flammability KW - Composites KW - Flame retardants PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-615371 DO - https://doi.org/10.1016/j.polymertesting.2024.108610 SN - 0142-9418 SN - 1873-2348 VL - 140 PB - Elsevier Ltd. AN - OPUS4-61537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jauregui Rozo, Maria A1 - Sunder, Sruthi A1 - Schartel, Bernhard A1 - Ruckdäschel, Holger T1 - Weaving through fire and force: Fire behavior, fire stability and modes of action between epoxy resin and glass-fiber composites N2 - Several investigation groups have studied the flame-retardancy modes of action and properties of epoxy resins in the past; nevertheless, the selection of suitable flame retardants for epoxy resins remains challenging, and the transfer to fiber composites is difficult. The addition of flame retardants and glass fibers (GFs) to a polymeric system in a fire scenario changes the polymer's pyrolytic path and burning characteristics, reduces the heat released in the combustion, and suppresses the modes of action in the condensed and gas phase. In this study, the thermal analysis, flammability, fire behavior, residue analysis, fire stability, and quantification of modes of action of three different systems with three halogen-free flame retardants (melamine polyphosphate (MPP), ammonium polyphosphate (APP), and silane ammonium polyphosphate (SiAPP)) and three different types of GFs (unidirectional (UD), bidirectional (BD), and woven roving (WR)) will be compared with pure epoxy resin as a reference. T2 - Fire & Polymers CY - New Orleans, LA, USA DA - 12.05.2024 KW - Glass-fiber-composites KW - Epoxy Resins KW - Flame Retardancy KW - Fire Stability KW - Bench-scale Fire Resistance Test PY - 2024 AN - OPUS4-60150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Inasu, S. A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - Correction to "Investigating the changing dynamics of processing, temperature‐based mechanics, and flame retardancy in the transfer of ammonium polyphosphate/inorganic silicate flame retardants from epoxy resins to glass fiber composites" N2 - This is a corrigendum to the original article "Investigating the changing dynamics of processing, temperature-based mechanics, and flame retardancy in the transfer of ammonium polyphosphate/inorganic silicate flame retardants from epoxy resins to glass fiber composites" that was published in the "Journal of applied polymer science", vol. 141 (2024), article no. e55988. PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-622687 DO - https://doi.org/10.1002/app.56329 SN - 1097-4628 VL - 141 IS - 48 SP - 1 PB - Wiley CY - New York, NY AN - OPUS4-62268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Inasu, S. A1 - Meinel, Dietmar A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - Effect of Ammonium Polyphosphate/Silicate Content on the Postfire Mechanics of Epoxy Glass-Fiber Composites Using Facile Chocolate Bar-Inspired Structures N2 - This study investigates the postfire mechanical properties of epoxy glass-fiber reinforced composites (EP GFRCs) using increasing concentrations of ammonium polyphosphate (APP) and inorganic silicate (InSi) to modify the char and fire residue. A facile chocolate bar-inspired structure was introduced for fire exposure and subsequent flexural testing of the GFRCs. The resin matrix used here was a diglycidyl ether of bisphenol-A (DGEBA) resin, cured with dicyandiamide (DICY), and accelerated by Urone. The microstructures of the degraded composites after three-point bending tests, were evaluated using scanning electron microscopy (SEM) and x-ray computed tomography (XCT) imaging. A previous study showed that increasing the APP and InSi content significantly enhanced flame retardancy, via improved char formation under fire conditions. However, flexural properties and fire resistance were adversely affected after fire exposure, highlighting a trade-off effect. Fiber breakage and delamination of the composites increased upon failure with increasing APP + InSi content in the composite due to unconsolidated char. The experimental values for the postfire flexural mechanics were in good agreement with the two-layer model proposed in literature. This paper presents a preliminary basis for postfire mechanical testing of epoxy composites for use in fire-safe structures, using a combination of standardized testing norms. KW - Flame retardants KW - Post-fire KW - Epoxy KW - Gass fiber composites KW - Prepregs PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627176 DO - https://doi.org/10.1002/fam.3280 SN - 0308-0501 SN - 1099-1018 VL - 49 IS - 3 SP - 329 EP - 346 PB - Wiley AN - OPUS4-62717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jauregui Rozo, Maria A1 - Sunder, S. A1 - Inasu, S. A1 - Meinel, Dietmar A1 - Ruckdäschel, H. A1 - Schartel, Bernhard T1 - Weaving Through Fire and Force: Fire Behavior and Fire Stability of Unidirectional, Bidirectional, and Woven Roving Glass-Fiber Composites N2 - This study systematically investigates the transfer of flame retardants (FRs) from epoxy resins to composites. The flame-retardant composites are formulated using bisphenol A diglycidyl ether as the resin and dicyandiamide as the hardener, reinforced with glass fibers (GFs) using various textile architectures: unidirectional (UD), bidirectional (BD), and woven rovings (WR). These composites are evaluated using bench-scale fire stability tests and cone calorimeter experiments to assess critical parameters, including the temperature at failure, time to failure, and fire behavior. Among the tested configurations, UD-GFs demonstrate superior flame retardancy, fire stability, flammability, and mechanical performance, attributed to their higher residue yield, forming a more efficient protective char layer. However, the addition of FRs is limited by their impact on the material's mechanical properties. When the FR content increases to 30 and 50 wt.% of the resin, the composites exhibit a decrease in mechanical performance, adversely affecting both time to failure and temperature at failure. While adding FRs reduces the risk of fire propagation, it does not substantially enhance fire stability or mechanical performance. KW - Fire Resistance KW - Fiber-Reinforced Polymer Composites KW - Fire Stability KW - Glass Fibers KW - Fire Behavior PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631220 SN - 1438-7492 SN - 1439-2054 VL - 310 IS - 5 SP - 2400432 PB - Wiley VHC-Verlag AN - OPUS4-63122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Deshpande, H. A1 - Neyer, A. A1 - Papaiya, V. A1 - Meinel, Dietmar A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - Char to the Rescue: Processing and Transfer of Flame-Retardant Epoxy Resins, Adjusting the Fire Behavior and Post-Fire Structural Integrity of Glass Fiber Composites N2 - Epoxy (EP) glass fiber reinforced composites (GFRCs) are extensively used in structural applications due to their excellent thermal and mechanical properties, but their inherent flammability limits fire-safe deployment. While numerous studies examine the flame retardancy of resins or individual composite systems, comprehensive studies evaluating simultaneous improvements in flame retardancy and post-fire mechanical integrity, specifically through prepreg processing, remain challenging. This study investigates the effectiveness and transferability of phosphorus-based flame retardant (FR) systems to diglycidyl ether of bisphenol A (DGEBA) and EP novolac resin matrices and their corresponding bidirectional glass fiber composites via prepregs. The FRs are chosen based on varying modes of action: ammonium polyphosphate with inorganic silicate (APP/InSi) primarily acts in the condensed phase (CP), and aluminum diethyl phosphinate with zinc hydroxystannate (AldietPO2/ZHS) is known to demonstrate both gas-phase (GP) and CP activity. Fire residues are tailored to compensate for structural defects from fire exposure. EP novolac, with higher aromaticity and cross-linking, possesses better inherent flame resistance compared to DGEBA. The novolac composites containing AldietPO2/ZHS simultaneously showed the highest retention of flexural properties after fire exposure and the best fire safety index. The experimental values of the post-fire flexural properties in the composites calibrated damage parameters in two theoretical models. KW - Composites KW - DGEBA KW - Epoxy novolac KW - Post-fire KW - Prepregs PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643752 DO - https://doi.org/10.1002/pol.20250692 SN - 2642-4169 SN - 2642-4150 VL - 63 IS - 20 SP - 4295 EP - 4309 PB - Wiley AN - OPUS4-64375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jauregui Rozo, Maria A1 - Sunder, S. A1 - Tabaka, Weronika A1 - Klaffke, Benjamin A1 - Ruckdäschel, H. A1 - Schartel, Bernhard T1 - Unveiling aluminum diethyl phosphinate dual identity: Transfer from epoxy resins to glass fiber-reinforced composites N2 - This study examines the transfer of the flame-retardant aluminum diethyl phosphinate (AlPi) from epoxy resins to composites and the impact of AlPi on fire behavior and fire stability. Further, the effects of different particle sizes and the addition of zinc hydroxy stannate (ZHS) and inorganic silicate (InSi) are investigated. The research provides a detailed analysis of the fire behavior, fire stability, pyrolysis, flame-retardant modes of action, and flame retardancy index. Interestingly, the particle sizes did not significantly affect the flammability, fire behavior, or fire stability in the systems investigated. AlPi acts primarily in the gas phase, releasing phosphorus that yields flame inhibition. Adding glass fibers (GFs) to the epoxy resin boosts the flame retardancy in the condensed phase, reducing the heat release rate (HRR), total heat release (THR), and peak heat release rate (PHRR) by about 60%. This improvement is largely due to replacing fuel and forming a protective layer during burning. Despite the differences between thermoset and composite, the study demonstrates an effective transfer of flame-retardant properties from epoxy resins to fiber-reinforced composites, significantly enhancing the flame retardancy performance in both material systems. KW - Aluminum diethyl phosphinate KW - Epoxy resins KW - Fire behavior KW - Fire stability KW - Gas-phase active KW - Glass fiber-reinforced composites KW - Particle sizes PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643013 DO - https://doi.org/10.1002/pc.29911 SN - 1548-0569 SN - 0272-8397 VL - 46 IS - 14 SP - 12981 EP - 12999 PB - Wiley AN - OPUS4-64301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -