TY - CONF A1 - Lu, Xin A1 - Schukar, Marcus A1 - Großwig, S. A1 - Weber, U. A1 - Krebber, Katerina T1 - Monitoring acoustic events in boreholes using wavelengthscanning coherent optical time domain reflectometry in multimode fiber N2 - A distributed acoustic sensor (DAS) based on wavelength-scanning coherent optical time domain reflectometer (WS-COTDR) is tested in an underground gas storage based on a multimode fiber for the first time to the best of our knowledge. The WS-COTDR acquires the reflection spectrum by scanning the wavelength of the laser and uses the spectra to calibrate strain. It overcomes the fading problem which is common for all DAS systems, and possesses the advantage of simple configuration and low-cost. The working principle of the system is well explained and the measurement results are presented. Various artificial and natural acoustic events have been successfully detected by the WS-COTDR. Such a sensor demonstrates several advantages over the traditional DAS systems, so it is supposed to be widely used in the oil and gas industry. T2 - EAGE GeoTech 2021 CY - Online meeting DA - 01.03.2021 KW - Borehole monitoring KW - Distributed fiber sensing KW - Acoustic sensing PY - 2021 U6 - https://doi.org/10.3997/2214-4609.202131010 SP - 1 EP - 5 AN - OPUS4-52152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kowarik, Stefan A1 - Hicke, Konstantin A1 - Chruscicki, Sebastian A1 - Schukar, Marcus A1 - Breithaupt, Mathias A1 - Lämmerhirt, A. A1 - Pohl, P. A1 - Schubert, M. ED - Cranch, G. ED - Wang, A. ED - Digonnet, M. ED - Dragic, P. T1 - Train monitoring using distributed fiber optic acoustic sensing N2 - We use distributed acoustic sensing to determine the velocity of trains from train vibration patterns using artificial neural network and conventional algorithms. The velocity uncertainty depends on track conditions, train type and velocity. T2 - 27th International Conference on Optical Fiber Sensors (OFS) CY - Meeting was canceled DA - 08.06.2020 KW - Train monitoring KW - Distributed acoustic sensing KW - DAS KW - Distributed fiber optic sensing PY - 2020 SN - 978-1-55752-307-5 U6 - https://doi.org/10.1364/OFS.2020.T3.25 SP - 1 EP - 4 PB - The Optical Society (Optical Society of America) CY - Washington D.C., USA AN - OPUS4-50758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munzke, Dorit A1 - Duffner, Eric A1 - Eisermann, René A1 - Schukar, Marcus A1 - Schoppa, André A1 - Szczepaniak, Mariusz A1 - Strohhäcker, J. A1 - Mair, Georg T1 - Monitoring of type IV composite pressure vessels with multilayer fully integrated optical fiber based distributed strain sensing N2 - We present the results of distributed fiber optic strain sensing for condition monitoring of a hybrid type IV composite fully wrapped pressure vessel using multilayer integrated optical fibers. Distributed strain sensing was performed for a total number of 252,000 load cycles until burst of the vessel. During this ageing test material fatigue could be monitored and spatially localized. Critical material changes were detected 17,000 cycles before material failure. Results have been validated by acoustic emission analysis. T2 - 12th International Conference on Composite Science and Technology (ICCST12) CY - Sorrento, Italy DA - 08.05.2019 KW - Hybrid composite pressure vessel KW - Distributed fiber optic sensing KW - Acoustic emission analysis KW - Structural health monitoring PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-516772 SN - 2214-7853 VL - 34 SP - 217 EP - 223 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-51677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wosniok, Aleksander A1 - Skoczowsky, Danilo A1 - Schukar, Marcus A1 - Pötzsch, Sina A1 - Pötschke, Samuel A1 - Krüger, Simone T1 - Fiber optic sensors for high-temperature measurements on composite tanks in fire N2 - For the purpose of increasing payload and reduce freight cost, lightweight composite tank containers used for Transportation have been progressively developed during the last years. Compared to conventionally produced cylindrical steel tanks, the fiber-reinforced solutions allow greater flexibility in the tank design. Despite a number of further material-related benefits of fiber-reinforced composites as non-conductive and non-magnetic behavior as well as corrosion resistance and high strength, the optimization of their thermal degradation properties during combustion is still a challenge. To improve the fire performance of lightweight composite containers, special intumescent fire protection coatings can be applied onto the outside tank surface. This paper presents fire tests on glass-fiber-reinforced plastic transport tanks with complex geometries sheltered with different surface-applied fire protection systems. To evaluate the fire resistance of the tank structures, a fiber optic monitoring system was developed. This system is based on distributed temperature measurements using high-Resolution optical backscatter reflectometry and pointwise reference measurements using fiber Bragg gratings. Thereby, all the fiber optic sensors were directly integrated in the composite layer structure of the tanks. The focus of the presented work is on the demonstration of capability of fiber optic monitoring system in such high-temperature application. Moreover, the fiber optic measurements provide new insights into the efficiency of intumescent coating applied for fire protection of fiber-reinforced plastic transport tanks. KW - Fire resistance KW - Composite material KW - Glass-fiber-reinforced plastic transport tank KW - Distributed fiber optic sensing KW - Optical backscatter reflectometry KW - Fiber optic sensor PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-481972 SN - 2190-5452 SN - 2190-5479 SP - 1 EP - 8 PB - Springer Nature AN - OPUS4-48197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schukar, Marcus A1 - Munzke, Dorit A1 - Duffner, Eric A1 - Eisermann, René A1 - Schoppa, André A1 - Szczepaniak, Mariusz A1 - Strohhäcker, J. A1 - Mair, Georg T1 - Monitoring of type IV composite pressure vessels with multilayer fully integrated optical fibre based distributed strain sensing N2 - We present the results of distributed fibre optic strain sensing for condition monitoring of a hybrid type IV composite overwrapped pressure vessel using multilayer integrated optical fibres. During load cycle tests material fatigue could be localised and monitored 17000 load cycles before burst. T2 - TAHYA Workshop "Structural health monitoring" CY - Berlin, Germany DA - 27.11.2019 KW - Distributed fibre optic sensing KW - Hybrid composite pressure vessel KW - Structural health monitoring PY - 2019 AN - OPUS4-49996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisermann, René A1 - Schukar, Marcus A1 - Nagel, Lukas A1 - Hickmann, Stefan A1 - Munzke, Dorit A1 - Trappe, Volker T1 - Characterising the material degradation of inner pressure-loaded GFRP-tube specimens using distributed strain sensing N2 - Glass-fibre-reinforced plastics (GFRP) are commonly used for the construction of pressure vessels and tanks for example in automotive and aerospace industries. Especially for pressure vessels used for the storage of natural gas or hydrogen with operation pressures up to 700 bar, an early material fatigue detection is of great interest. Measuring the distributed strain profile of GFRP structures helps to understand and detect material fatigue. In this article, we demonstrate the great potential of swept wavelength interferometry (SWI) based distributed strain sensing for the monitoring of pressure vessels made from GFRP. A resin transfer molding (RTM) process was used to manufacture GFRP-tube specimens. Commercial optical fibres with polyimid coating were glued to the surface externally in circumferential and axial direction. A cyclic load of up to 150 bar was applied to the samples using a servo-hydraulic test bench. Comparing the loaded and unloaded test conditions, we determined up to 2 % elongation in circumferential direction. We demonstrate reliable distributed strain measurements with sub-centimetre spatial resolution. By monitoring these high-resolution strain profiles, we were able to detect local material degradation that manifested itself as localized strain changes. Crucially, the material Degradation could be detected already after 75 % of dat the fatigue life before a crack appeared that led to leakage. T2 - Sensoren und Messsysteme - 19. ITG/GMA-Fachtagung CY - Nürnberg, Germany DA - 26.06.2018 KW - Distributed fibre optic sensors KW - Optical backscatter reflectometry KW - Swept wavelength interferometry (SWI) KW - Structural health monitoring (SHM) KW - Composite structures KW - Optical fibre PY - 2018 UR - https://ieeexplore.ieee.org/document/8436172/ SN - 978-3-8007-4683-5 SP - 239 EP - 242 PB - VDE VERLAG GMBH CY - Berlin AN - OPUS4-45887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rasmussen, H. K. A1 - Fasano, A. A1 - Stajanca, Pavol A1 - Woyessa, G. A1 - Schukar, Marcus A1 - Bang, O. T1 - Mechanical characterization of drawn Zeonex, Topas, polycarbonate and PMMA microstructured polymer optical fibres N2 - The mechanical stress-strain behaviour of polymer optical fibres (POFs) drawn from various materials was measured, both before and after temperature annealing of the POFs. The POFs were drawn from PMMA (GEHR), Zeonex (480R), PC (Makrolon LED2245) and two different grades of Topas (8007S-04 and 5013S-04). With fibre drawing stresses at or above the elastic (uniaxial extensional) plateau modulus, the polymer chains in the POFs have a high degree of alignment, which has a large impact on fibre mechanical behaviour. The testing was performed at straining rates ranging from 0.011%/s, to 1.1%/s for the un-annealed fibres and a straining rate of 1.1%/s for the annealed ones. The elastic modulus of the tested POFs showed no sensitivity toward variation of straining rate. In the case of Topas 5013S-04 and PMMA, the producer-reported values are the same as the one obtained here for the POFs both before and after annealing. The drawn POFs made of Zeonex, PC, and Topas 8007S-04 exhibit larger elastic modulus than the respective materials in the bulk form. The elastic modulus of these fibres is reduced upon annealing by 10-15%, but still remains above the producer-reported values for the bulk polymers. In the nonlinear elastic region, only the PC POF is statistically unaffected by the changes in the straining rate, while Topas 8007S-04 POF shows insensitivity to the straining rate until 3% strain. All other changes affect the stress-strain curves. The annealing flattens all stress-strain curves, making the fibres more sensitive to yield. KW - Polymer optical fibres KW - Mechanical characterization KW - Stree-strain curve KW - PMMA KW - Topas KW - Polycarbonate KW - Zeonex PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-464163 SN - 2159-3930 VL - 8 IS - 11 SP - 3600 EP - 3614 PB - Optical Society of America CY - Washington, DC AN - OPUS4-46416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisermann, René A1 - Basedau, Frank A1 - Kadoke, Daniel A1 - Gründer, Peter A1 - Schoppa, André A1 - Lehr, Christian A1 - Szczepaniak, Mariusz A1 - John, Sebastian A1 - Schukar, Marcus A1 - Munzke, Dorit A1 - Mair, Georg T1 - Distributed strain sensing with sub-centimetre resolution for the characterisation of structural inhomogeneities and material degradation of industrial high-pressure composite cylinders N2 - Fibre-reinforced plastics (FRP) especially carbon-fibre-reinforced polymer (CFRP) and glass-fibre-reinforced polymer (GFRP) are commonly used materials in high pressure vessels and storage units for automotive and aerospace purposes. Optical fibres are suitable to be integrated or directly applied to the surface of FRP components. Using optical fibres it is possible to monitor the distributed strain profiles and changes within the fatigue life of a pressure vessel to ensure the operational safety. Within artificial ageing experiments we used swept wavelength interferometry (SWI) based distributed strain sensing for the monitoring of commercial high-pressure composite cylinder. This artificial ageing was performed using test conditions of 503bar pressure load (service pressure 300 bar) and 89 °C for 100 h. The polyimide coated optical fibres were glued to the surface externally in circumferential and axial direction. Using distributed strain sensing (DSS) material expansion of over 0.5% were monitored with sub-centimetre spatial resolution. Within the circumferential direction we observed up to 10 % local fluctuation compared to the median strain caused by inhomogeneous material expansion, which could cause local material fatigue. In addition, we determined material degradation manifested itself as localized remaining material expansion and/or contraction. Results have been validated by other non-destructive methods like digital strip projection. T2 - 9th European Workshop on Structural Health Monitoring (EWSHM) CY - Manchester, UK DA - 10.07.2018 KW - Distributed fibre optic sensors KW - Optical backscatter reflectometry KW - Swept wavelength interferometry (SWI) KW - Structural health monitoring (SHM) KW - Composite structures KW - Optical fibre PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-458926 SP - 1 EP - 8 AN - OPUS4-45892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -