TY - CONF A1 - Lu, Xin A1 - Schukar, Marcus A1 - Krebber, Katerina T1 - Characterizing vibration response of fiber cables for distributed acoustic sensing N2 - The vibration responses of two fiber cables are characterized up to 16 kHz and compared with a standard tight-buffered 900 um fiber. The response of the cables is suppressed due to the cable protection T2 - 27th International Conference on Optical Fiber Sensors (OFS-27) CY - Alexandria, VA, USA DA - 29.08.2022 KW - Response characterization KW - Distributed fiber sensing KW - Acoustic sensing PY - 2022 SP - 1 EP - 4 PB - Optica CY - Washington D.C., USA AN - OPUS4-56096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lu, Xin A1 - Schukar, Marcus A1 - Weege, S. A1 - Roske, T. A1 - Krebber, Katerina T1 - Leakage detection at a borehole simulator using distributed acoustic sensing N2 - A distributed acoustic sensing system is used to detect the leakage in a borehole simulator by measuring the leakage induced vibration. The leakage location can be clearly determined by frequency spectrum analysis. T2 - 27th International Conference on Optical Fiber Sensors (OFS-27) CY - Alexandria, VA, USA DA - 29.08.2022 KW - Leakage detection KW - Structural health monitoring KW - Distributed fiber sensing KW - Distributed acoustic sensing PY - 2022 SP - 1 EP - 4 PB - Optica CY - Washington D.C., USA AN - OPUS4-56097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lu, Xin A1 - Schukar, Marcus A1 - Weege, S. A1 - Roske, T. A1 - Krebber, Katerina T1 - Leakage detection at a borehole simulator using distributed acoustic sensing N2 - A distributed acoustic sensing system is used to detect the leakage in a borehole simulator by measuring the leakage induced vibration. The leakage location can be clearly determined by frequency spectrum analysis. T2 - 27th International Conference on Optical Fiber Sensors (OFS-27) CY - Alexandria, VA, USA DA - 29.08.2022 KW - Structural health monitoring KW - Distributed fiber sensing KW - Distributed acoustic sensing KW - Leakage detection PY - 2022 AN - OPUS4-56098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lu, Xin A1 - Schukar, Marcus A1 - Krebber, Katerina T1 - Characterizing vibration response of fiber cables for distributed acoustic sensing N2 - The vibration responses of two fiber cables are characterized up to 16 kHz and compared with a standard tight-buffered 900 um fiber. The response of the cables is suppressed due to the cable protection. T2 - 27th International Conference on Optical Fiber Sensors (OFS-27) CY - Alexandria, VA, USA DA - 29.08.2022 KW - Distributed fiber sensing KW - Acoustic sensing KW - Response characterization PY - 2022 AN - OPUS4-56099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Xin A1 - Chruscicki, Sebastian A1 - Schukar, Marcus A1 - Münzenberger, Sven A1 - Krebber, Katerina T1 - Application of Intensity-Based Coherent Optical Time Domain Reflectometry to Bridge Monitoring N2 - Although distributed fiber sensing techniques have been widely used in structural health monitoring, the measurement results of bridge monitoring, particularly under destructive testing, have rarely been reported. To the best of our knowledge, this paper is the first report of distributed vibration measurement results, which we obtained during a three-day destructive test on an abolished bridge. A coherent optical time domain reflectometry (COTDR) was used to acquire the vibration information while the bridge was being sawed. The obtained signal was analyzed in time and frequency domain. Some characteristics of the sawing-induced vibration were retrieved by the short-time Fourier transform; the vibration exhibited several high frequency components within the measured range up to 20 kHz and all the components appeared in the same time slot. Some unexpected signals were also detected. Thorough analysis showed that they are quite different from the sawing-induced vibration and are believed to originate from internal damage to the bridge (probably the occurrence of cracks). KW - Destructive testing KW - Structural health monitoring KW - Distributed fiber sensing KW - Distributed acoustic sensing PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547451 VL - 22 IS - 9 SP - 3434 PB - MDPI AN - OPUS4-54745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lu, Xin A1 - Schukar, Marcus A1 - Großwig, S. A1 - Weber, U. A1 - Krebber, Katerina T1 - Monitoring acoustic events in boreholes using wavelengthscanning coherent optical time domain reflectometry in multimode fiber N2 - A distributed acoustic sensor (DAS) based on wavelength-scanning coherent optical time domain reflectometer (WS-COTDR) is tested in an underground gas storage based on a multimode fiber for the first time to the best of our knowledge. The WS-COTDR acquires the reflection spectrum by scanning the wavelength of the laser and uses the spectra to calibrate strain. It overcomes the fading problem which is common for all DAS systems, and possesses the advantage of simple configuration and low-cost. The working principle of the system is well explained and the measurement results are presented. Various artificial and natural acoustic events have been successfully detected by the WS-COTDR. Such a sensor demonstrates several advantages over the traditional DAS systems, so it is supposed to be widely used in the oil and gas industry. T2 - EAGE GeoTech 2021 Second EAGE Workshop on Distributed Fibre Optic Sensing CY - Online meeting DA - 01.03.2021 KW - Leakage detection KW - Distributed acoustic sensing KW - Distributed fiber optic sensing PY - 2021 U6 - https://doi.org/10.3997/2214-4609.202131010 SP - Paper 10, 1 PB - European Association of Geoscientists & Engineers CY - Houten, Niederlande AN - OPUS4-52248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krebber, Katerina A1 - Weege, S. A1 - Großwig, S. A1 - Obermöller, M. A1 - Perk, M. A1 - Lu, Xin A1 - Schukar, Marcus A1 - Weber, U. A1 - Pfeiffer, T. A1 - Rembe, M. T1 - Kombinierte faseroptische Messungen in Bohrlöchern helfen bei der Detektion von Kleinstleckagen N2 - Seit November 2019 läuft ein breit angelegtes und vom BMWi gefördertes ZIM-Kooperationsprojekt zwischen der Bundesanstalt für Materialforschung und -prüfung (BAM), der IAB'Weimar gGmbH, der GKSO GmbH & Co. Projekt KG, der DEEP.KBB GmbH sowie der Rembe Consulting PartG mbB. Ziel des Forschungsvorhabens sind sowohl die Lokalisierung als auch die Quantifizierung insbesondere sehr kleiner Leckagen in einer Bohrlochverrohrung durch die Nutzung faseroptischer Messtechnik. Durch Messdatenkopplung und den Wegfall bewegungsbedingter Nachteile einer Messsonde werden wesentlich präzisere Ergebnisse zur Bewertung der Bohrlochintegrität als üblich erwartet. T2 - DGMK/ÖGEW-Frühjahrstagung 2020 CY - Meeting was canceled DA - 15.04.2020 KW - Wasserstoffspeicher KW - Kavernenspeicher KW - Verteilte faseroptische akustische Sensorik PY - 2020 VL - 6 SP - 43 EP - 43 PB - DVV Media Group CY - Hamburg AN - OPUS4-52233 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lu, Xin A1 - Schukar, Marcus A1 - Großwig, S. A1 - Weber, U. A1 - Krebber, Katerina T1 - Monitoring acoustic events in boreholes using wavelengthscanning coherent optical time domain reflectometry in multimode fiber N2 - A distributed acoustic sensor (DAS) based on wavelength-scanning coherent optical time domain reflectometer (WS-COTDR) is tested in an underground gas storage based on a multimode fiber for the first time to the best of our knowledge. The WS-COTDR acquires the reflection spectrum by scanning the wavelength of the laser and uses the spectra to calibrate strain. It overcomes the fading problem which is common for all DAS systems, and possesses the advantage of simple configuration and low-cost. The working principle of the system is well explained and the measurement results are presented. Various artificial and natural acoustic events have been successfully detected by the WS-COTDR. Such a sensor demonstrates several advantages over the traditional DAS systems, so it is supposed to be widely used in the oil and gas industry. T2 - EAGE GeoTech 2021 CY - Online meeting DA - 01.03.2021 KW - Borehole monitoring KW - Distributed fiber sensing KW - Acoustic sensing PY - 2021 U6 - https://doi.org/10.3997/2214-4609.202131010 SP - 1 EP - 5 AN - OPUS4-52152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wosniok, Aleksander A1 - Skoczowsky, Danilo A1 - Schukar, Marcus A1 - Pötzsch, Sina A1 - Pötschke, Samuel A1 - Krüger, Simone T1 - Fiber optic sensors for high-temperature measurements on composite tanks in fire N2 - For the purpose of increasing payload and reduce freight cost, lightweight composite tank containers used for Transportation have been progressively developed during the last years. Compared to conventionally produced cylindrical steel tanks, the fiber-reinforced solutions allow greater flexibility in the tank design. Despite a number of further material-related benefits of fiber-reinforced composites as non-conductive and non-magnetic behavior as well as corrosion resistance and high strength, the optimization of their thermal degradation properties during combustion is still a challenge. To improve the fire performance of lightweight composite containers, special intumescent fire protection coatings can be applied onto the outside tank surface. This paper presents fire tests on glass-fiber-reinforced plastic transport tanks with complex geometries sheltered with different surface-applied fire protection systems. To evaluate the fire resistance of the tank structures, a fiber optic monitoring system was developed. This system is based on distributed temperature measurements using high-Resolution optical backscatter reflectometry and pointwise reference measurements using fiber Bragg gratings. Thereby, all the fiber optic sensors were directly integrated in the composite layer structure of the tanks. The focus of the presented work is on the demonstration of capability of fiber optic monitoring system in such high-temperature application. Moreover, the fiber optic measurements provide new insights into the efficiency of intumescent coating applied for fire protection of fiber-reinforced plastic transport tanks. KW - Fire resistance KW - Composite material KW - Glass-fiber-reinforced plastic transport tank KW - Distributed fiber optic sensing KW - Optical backscatter reflectometry KW - Fiber optic sensor PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-481972 SN - 2190-5452 SN - 2190-5479 SP - 1 EP - 8 PB - Springer Nature AN - OPUS4-48197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kowarik, Stefan A1 - Hicke, Konstantin A1 - Chruscicki, Sebastian A1 - Schukar, Marcus A1 - Breithaupt, Mathias A1 - Lämmerhirt, A. A1 - Pohl, P. A1 - Schubert, M. ED - Cranch, G. ED - Wang, A. ED - Digonnet, M. ED - Dragic, P. T1 - Train monitoring using distributed fiber optic acoustic sensing N2 - We use distributed acoustic sensing to determine the velocity of trains from train vibration patterns using artificial neural network and conventional algorithms. The velocity uncertainty depends on track conditions, train type and velocity. T2 - 27th International Conference on Optical Fiber Sensors (OFS) CY - Meeting was canceled DA - 08.06.2020 KW - Train monitoring KW - Distributed acoustic sensing KW - DAS KW - Distributed fiber optic sensing PY - 2020 SN - 978-1-55752-307-5 U6 - https://doi.org/10.1364/OFS.2020.T3.25 SP - 1 EP - 4 PB - The Optical Society (Optical Society of America) CY - Washington D.C., USA AN - OPUS4-50758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -