TY - CONF A1 - Gumenyuk, Andrey A1 - Gook, Sergej A1 - Lammers, Marco A1 - Rethmeier, Michael T1 - High power fibre laser welding for pipeline applications N2 - With an availability of the modern high power fibre lasers the application range of laser and laser hybrid welding can be significantly increased. For the implementation of this new technology in the economically extremely interesting application of pipeline construction it is necessary to fulfil a series of systematic research studies. As it has been shown in the past the fibre laser hybrid wielding of pipeline Steel X65 up to 32 mm thickness is possible with appropriate quality. For the use of laser-hybrid welding in pipe laying insensibility towards tolerances and the possibility of girth welding are very important factors in addition to the weld seam quality. The aim of a Research project carried out in the Federal Institute for Materials Research and Testing (BAM) was the development of a welding procedure using high power fibre laser in combination with GMAWProcess which could be applied for welding of pipelines. For tests segments of linepipes with an outer diameter of 914 mm and a wall thickness of 16 mm have been welded using specially designed equipment for girth welding of pipes. First promising results for the use of laser-hybrid welding of thick materials could be demonstrated. The gap-bridgeability and misalignement was studied. T2 - LAMP2009 - 5th International congress on laser advanced materials processing CY - Kobe, Japan DA - 29.06.2009 KW - High power fiber laser KW - Laser beam welding KW - Hybrid welding KW - Pipeline construction KW - Orbital welding PY - 2009 SP - 1 EP - 5 AN - OPUS4-19936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rethmeier, Michael A1 - Gook, Sergej A1 - Lammers, Marco A1 - Gumenyuk, Andrey T1 - Laser-Hybrid Welding of Thick Plates up to 32 mm Using a 20 kW Fibre Laser N2 - New brilliant high-power lasers such as disc laser and fibre laser open up new fields of applications for laser-hybrid welding, e.g. power generation, shipbuilding and pipeline construction. For the use of laser-hybrid welding in pipe laying, insensibility towards tolerances and the possibility of orbital welding are very important factors in addition to the weld seam quality. Within the scope of a basic research project, first promising results for laser-hybrid welding of thick materials could be demonstrated. As base material, the typical pipeline steel API 5L X65 was selected. With the help of a 20 kW fibre laser in combination with an arc-welding process it was possible to produce high-quality welds in plates of up to 20 mm thickness in a single pass and of up to 32 mm in three to five passes, both welded in position PA. Various joint preparations were examined to weld 20 mm thick plates in one pass. Besides different welding positions, gap bridgeability and misalignment were studied. Results for microhardness and Charpy toughness are presented to proof the applicability of laser-hybrid welding for joining in pipe laying. KW - Laser beam welding KW - High power fibre laser KW - Laser-hybrid welding KW - Tick plates KW - Pipe laying PY - 2009 U6 - https://doi.org/10.2207/qjjws.27.74s SN - 0288-4771 VL - 27 IS - 2 SP - 74 EP - 79 CY - Tokyo, Japan AN - OPUS4-20345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -