TY - CONF A1 - Zeipert, H. A1 - Johannesmann, S. A1 - Nicolai, Marcel A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens A1 - Henning, B. T1 - Quantifying the coupling strength of adhesively bonded materials by investigating mode repulsion regions N2 - In the field of non-destructive testing, Lamb waves are often used for material characterisation. The increasing computational capabilities further enable complex and detailed simulations to predict the material behaviour in reality. Since adhesive bonding of different materials is a widely used method in modern applications, a reliable measurement system to determine the quality of these adhesive bonds is needed. Investigations of the dispersive behaviour of acoustic waves in adhesively bonded multi-layered waveguides show mode repulsions in the dispersion diagrams in regions where the modes of the single materials would otherwise intersect. In previous works, changes of the distance between those modes with respect to the bonding quality are observed. The experimental data for this investigation is generated using pulsed laser radiation to excite broadband acoustic waves in plate like specimens which are detected by a piezoelectric ultrasonic transducer. Numerical data is generated using simulations via a semi-analytical finite element method. Using a combination of experimental and numerical data, the present work introduces an approach to determine a parameter which indicates the bonding quality in relation to an ideal material coupling. T2 - DAGA 2021 CY - Vienna, Austria DA - 15.08.2021 KW - Ultrasonic guided waves KW - Multi-layered structures KW - Laser excited ultrasonic waves PY - 2021 SP - 1532 EP - 1535 AN - OPUS4-53581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeipert, H. A1 - Claes, L. A1 - Johannesmann, S. A1 - Lugovtsova, Yevgeniya A1 - Nicolai, Marcel A1 - Prager, Jens A1 - Henning, Bernd ED - Jumar, U. T1 - An approach to adhesive bond characterisation using guided acoustic waves in multi-layered plates N2 - An approach for the non-destructive characterisation of adhesive bonds using guided ultrasonic waves is presented. Pulsed laser radiation is used to thermoacoustically excite broadband ultrasonic waves in a multi-layered sample, consisting of a metal plate adhesively joined to a polymeric layer using synthetic resin. The resulting signals are received by a purpose-built piezoelectric transducer. Varying the distance between excitation and detection yields spatio-temporal measurement data, from which the dispersive properties of the propagating waves can be inferred using a two-dimensional Fourier transform, assuming the plates to act as coupled waveguides. Coupled multi-layered waveguides show an effect referred to as mode repulsion, where the distance between certain modes in the frequency-wavenumber domain is assumed to be a measure of coupling strength. Measurements at different stages of curing of the adhesive layer are performed and evaluated. A comparison of the results shows changes in the dispersive properties, namely an increased modal bandwidth for the fully cured sample as well as an increased modal distance. KW - Adhesive bonding KW - Guided waves KW - Non-destructive testing KW - Ultrasound PY - 2021 DO - https://doi.org/10.1515/auto-2021-0089 VL - 69 IS - 11 SP - 962 EP - 969 PB - De Gruyter CY - Berlin/Boston AN - OPUS4-53762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Zeipert, H. A1 - Johannesmann, S. A1 - Nicolai, Marcel A1 - Prager, Jens A1 - Henning, B. T1 - К определению прочности клеевого соединения в многослойных материалах путем исследования областей расталкивания бегущих упругих волн T1 - Towards the determination of adhesive bonding strength of multi-layered materials by investigating guided wave mode repulsion N2 - Бегущие упругие волны часто используются в области неразрушающего контроля для определения механических характеристик материалов. Поскольку склеивание различных материалов является широко используемым методом в автомобильной и авиационной промышленности, необходима надежная система измерения для определения качества таких клеевых соединений. Дисперсионные кривые для многослойных волноводов при наличии клеевых прослоек характеризуются появлением эффекта расталкивания нормальных мод в тех областях, где соответствующие моды для отдельных материалов пересекались бы. Таким образом, в зависимости от качества клеевого соединения расстояние между этими модами изменяется. Используя комбинацию экспериментальных и численных данных, в настоящей работе представлен подход к определению параметра, указывающего на качество клеевого соединения. T2 - XXX Всероссийская школа-конференция МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В ЕСТЕСТВЕННЫХ НАУКАХ CY - Online meeting DA - 06.10.2021 KW - многослойный волновод KW - волны лэмбовского типа KW - контроль качества клеевого соединения PY - 2021 SP - 1 EP - 3 AN - OPUS4-53769 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolai, Marcel A1 - Zeipert, H. A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Johannesmann, S. A1 - Prager, Jens A1 - Henning, B. ED - Nicolai, Marcel T1 - Characterization of adhesion strength using guided ultrasonic waves N2 - Klebeverbindungen sind aus vielen Anwendungen wie dem Leichtbau nicht mehr wegzudenken. Durch die Verklebung gleicher oder ungleicher Materialien entstehen viele Vorteile gegenüber konservativen Fügeverfahren. Jedoch stellen schwache Haftfestigkeiten eine sehr unbeliebte Fehlerart dar, die schlecht zu detektieren sind und zu einem frühzeitigen Versagen der Verklebung bei vergleichsweise geringen Belastungen führen können. Aufgrund hoher Sicherheits- und Qualitätsansprüche wird die Haftfestigkeit dieser Verbindungen jedoch noch immer zerstörend geprüft. Zufriedenstellende zerstörungsfreie Verfahren, um Haftfestigkeiten zu prüfen, sind nicht vorhanden und Thema gegenwärtiger Forschung. Ein Ansatz, der in diesem Projekt verfolgt wird, liegt in der Verwendung geführter Ultraschallwellen. Hierzu wird anhand von Simulationen mittels der Scaled Boundary Finite Element Methode gezeigt, dass die gezielte Auswertung bestimmter Bereiche des Dispersionsdiagrams, den sogenannten vermiedenen Kreuzungen (engl. mode repulsion regions), eine Charakterisierung der Haftfestigkeiten zulassen könnten. Dies liegt darin begründet, dass die mittleren mechanischen Belastungen der Kleberschicht in diesen Bereichen ein lokales Maximum aufweisen und daher eine erhöhte Sensitivität auf Materialänderungen haben. Es wird gezeigt, wie sensitiv diese Bereiche auf Materialänderungen in der Klebergrenzschicht sind und welche potenziellen Fehlergrößen existieren. T2 - DAGA 2023 CY - Hamburg, Germany DA - 06.03.2023 KW - SBFEM KW - Adhesive Bonding KW - Kissing Bonds KW - NDT KW - Ultrasonic Guided Waves PY - 2023 UR - https://pub.dega-akustik.de/DAGA_2023 SN - 978-3-939296-21-8 SP - 823 EP - 826 PB - Deutsche Gesellschaft für Akustik e.V. CY - Berlin AN - OPUS4-57378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolai, Marcel A1 - Zeipert, H. A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens A1 - Henning, B. A1 - Lozano Duarte, Daniel Hernando T1 - Charakterisierung von Haftfestigkeiten mittels geführter Ultraschallwellen N2 - Klebeverbindungen sind aus vielen Anwendungen wie dem Leichtbau nicht mehr wegzudenken. Durch die Verklebung gleicher oder ungleicher Materialien entstehen viele Vorteile gegenüber konservativen Fügeverfahren. Jedoch stellen schwache Haftfestigkeiten eine sehr unbeliebte Fehlerart dar, die schlecht zu detektieren sind und zu einem frühzeitigen Versagen der Verklebung bei vergleichsweise geringen Belastungen führen können. Aufgrund hoher Sicherheits- und Qualitätsansprüche wird die Haftfestigkeit dieser Verbindungen jedoch noch immer zerstörend geprüft. Zufriedenstellende zerstörungsfreie Verfahren, um Haftfestigkeiten zu prüfen, sind nicht vorhanden und Thema gegenwärtiger Forschung. Ein Ansatz, der in diesem Projekt verfolgt wird, liegt in der Verwendung geführter Ultraschallwellen. Hierzu wird anhand von Simulationen mittels der Scaled Boundary Finite Element Methode gezeigt, dass die gezielte Auswertung bestimmter Bereiche des Dispersionsdiagrams, den sogenannten vermiedenen Kreuzungen (engl. mode repulsion regions), eine Charakterisierung der Haftfestigkeiten zulassen könnten. Dies liegt darin begründet, dass die mittleren mechanischen Belastungen der Kleberschicht in diesen Bereichen ein lokales Maximum aufweisen und daher eine erhöhte Sensitivität auf Materialänderungen haben. Es wird gezeigt, wie sensitiv diese Bereiche auf Materialänderungen in der Klebergrenzschicht sind und welche potenziellen Fehlergrößen existieren. T2 - Schall 23 CY - Wetzlar, Germany DA - 20.03.2023 KW - Adhesive Bonding KW - Kissing Bonds KW - NDT KW - Ultrasonic Guided Waves KW - SBFEM PY - 2023 AN - OPUS4-57379 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolai, Marcel T1 - Charakterisierung von Haftfestigkeiten mittels geführter Ultraschallwellen N2 - Klebeverbindungen sind aus dem heutigen Leichtbau wie der Automobil- und Luftfahrtindustrie nicht mehr wegzudenken. Durch die Verklebung gleicher oder ungleicher Materialien entstehen viele Vorteile gegenüber konservativen Fügeverfahren wie dem Schweißen oder dem Nieten. Aufgrund hoher Sicherheits- und Qualitätsansprüche wird die Festigkeit dieser Verbindungen jedoch noch immer zerstörend geprüft. Zuverlässige und zufriedenstellende zerstörungsfreie Verfahren, insbesondere um schwache Haftfestigkeiten zu prüfen, sind nicht vorhanden und Thema gegenwärtiger Forschung. Ein Ansatz, der in diesem Projekt verfolgt wird, liegt in der Verwendung geführter Ultraschallwellen und der gezielten Auswertung spezifischer Bereiche des Dispersionsdiagrams, den sogenannten Mode Repulsion Regions, welche eine potenzielle Charakterisierung der Haftfestigkeiten zulassen könnten. Hierzu wurden neben Simulationen mittels der sogenannten SBFEM, zur Findung geeigneter Charakterisierungsparameter, auch experimentelle zerstörungsfreie Untersuchungen von verklebten Zweischichtstrukturen aus Aluminium und Polycarbonat mittels geführter Ultraschallwellen durchgeführt . Hierzu dienten Voruntersuchungen an Stirnabzugsproben mittels zerstörender Validierungsmessungen zur Ermittlung geeigneter Oberflächenbearbeitungen zur Herstellung verschiedener Haftfestigkeiten. Mit Niederdruckplasma behandelte Proben dienten bei den zerstörungsfreien Messungen als ideale Referenzklebung gegenüber den schwächeren Haftfestigkeiten. Es konnten verschiedenste Haftfestigkeiten reproduzierbar hergestellt, zerstörend validiert und zerstörungsfrei mittels geführter Ultraschallwellen untersucht werden. Die Ausprägungen bestimmter Mode Repulsion Regions zeigen eine vielversprechende Sensitivität, welche durch ein geeigneten Parameter charakterisiert werden konnten. T2 - Doktorandenworkshop 2022 CY - Kloster Lehnin, Germany DA - 19.10.2022 KW - Adhesive Bonding KW - Kissing Bonds KW - Ultrasonic Guided Waves KW - NDT KW - SBFEM PY - 2022 AN - OPUS4-57380 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolai, Marcel A1 - Bulling, Jannis A1 - Lugovtsova, Yevgeniya A1 - Zeipert, Henning A1 - Prager, Jens A1 - Henning, Bernd ED - van Keulen, Wim ED - Kok, Jim T1 - On the repulsion effect of coupled Lamb wave modes N2 - Lamb waves, recognized for their significance in material characterisation, structural health monitor-ing, and non-destructive testing, exhibit complex behaviours that are crucial for industrial applica-tions. This paper delves into the mathematical and physical principals of the repulsion effect that can be observed in the dispersion curves of coupled Lamb wave modes. This effect is the result from the mechanical coupling of thin-walled solid plates and prevents the crossing of the dispersion curves. The study employs the Scaled Boundary Finite Element Method to calculate the dispersion curves of coupled plates and to simulate their interaction for a weak and ideal coupling. Through a mathemati-cal framework and a physical analogy with simple harmonic oscillators, the paper elucidates the un-derlying principals of this effect. Furthermore, the paper highlights the practical significance of the repulsion effect in Lamb waves, suggesting its application for testing and monitoring the integrity of multi-layer structures like adhesive bonds, which are important for various industrial applications. A deepened understanding of this effect could contribute to the enhancement of non-destructive evalua-tion techniques. T2 - ICSV 2024 CY - Amsterdam, The Netherlands DA - 08.07.2024 KW - Scaled Boundary Finite Element Method (SBFEM) KW - Lamb waves KW - Mode repulsion KW - Mechanical coupling KW - Dispersion curves PY - 2024 SN - 978-90-90-39058-1 SN - 2329-3675 SP - 410 EP - 418 PB - The International Institute of Acoustics and Vibration (IIAV) CY - Amsterdam AN - OPUS4-62855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolai, Marcel A1 - Bulling, Jannis A1 - Lugovtsova, Yevgeniya A1 - Zeipert, Henning A1 - Prager, Jens A1 - Henning, Bernd T1 - On the repulsion effect of coupled Lamb wave modes N2 - This work investigates the phenomenon of mode repulsion in coupled Lamb wave systems. By mechanically coupling two dissimilar plates using spring elements, it is shown that previously intersecting Lamb wave modes are repelled, avoiding any crossing in the dispersion curves. The effect, rooted in eigenvalue theory and first observed in quantum systems, is explained through both mathematical models and classical analogies with coupled harmonic oscillators. Numerical simulations using the Scaled Boundary Finite Element Method validate the theoretical predictions, revealing a correlation between strain distribution and frequency splitting. The observed mode repulsion provides new insights into interface properties and offers potential for applications such as monitoring adhesive degradation in layered structures. T2 - DAGA 2024 CY - Hannover, Germany DA - 18.03.2024 KW - Scaled Boundary Finite Element Method (SBFEM) KW - Lamb waves KW - Mode repulsion KW - Mechanical coupling KW - Dispersion curves PY - 2024 SP - 632 EP - 635 AN - OPUS4-62854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolai, Marcel T1 - Modenabstoßung bei schwach und stark gekoppelten Lamb Wellen N2 - Lamb-Wellen, die für ihre Bedeutung in der zerstörungsfreien Prüfung bekannt sind, zeigen komplexe Verhaltensweisen, die für industrielle Anwendungen von großer Relevanz sind. Diese Arbeit untersucht das Phänomen der Modenabstoßung, das in den Dispersionskurven von verklebten, dünnwandigen Platten beobachtet wird. Zudem wird dessen potenzielle industrielle Anwendung zur Quantifizierung der Haftfestigkeit zwischen diesen Platten erforscht. Das Phänomen resultiert aus der mechanischen Kopplung der Platten, die das Kreuzen der Dispersionskurven verhindert und zu einem interessanten dispersiven Verhalten führt. Um ein besseres physikalisches Verständnis zu erlangen, wird die Scaled-Boundary-Finite-Elemente-Methode eingesetzt, um die Lamb-Wellen-Moden gekoppelter Platten zu berechnen und ihr Verhalten unter schwacher und starker Kopplung zu simulieren. Mithilfe eines mathematischen Models und einer physikalischen Analogie zu einfachen harmonischen Oszillatoren werden die zugrundeliegenden Prinzipien dieses Phänomens erläutert. Darüber hinaus werden experimentelle Dispersionskurven für schwache und starke Kopplungen mithilfe von PZT-Wandlern für die breitbandige Anregung (100 kHz – 1 MHz) von Lamb-Wellen erfasst, wobei die Modendetektion durch Laser-Doppler-Vibrometrie erfolgt. Die numerischen Dispersionskurven werden mit den experimentellen verglichen, um die angeregten Moden zu identifizieren. Es zeigt sich, dass die Bereiche der Modenabstoßung durch die Kopplungsstärke der Platten beeinflusst werden. Zudem wurde ein numerisches Modell entwickelt, um die Kopplungsstärke anhand der Frequenzdifferenz, die in den Modenabstoßungsbereichen erhalten wurde, zu korrelieren und zu quantifizieren. T2 - Doktorandenseminar in Joachimsthal CY - Joachimsthal, Germany DA - 28.10.2024 KW - Lamb waves KW - Mode repulsion KW - Mechanical coupling KW - Dispersion curves KW - Scaled Boundary Finite Element Method PY - 2024 AN - OPUS4-62860 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolai, Marcel T1 - On the repulsion effect of coupled Lamb Wave modes N2 - Lamb waves, recognized for their significance in material characterisation, structural health monitoring, and non-destructive testing, exhibit complex behaviours that are crucial for industrial applications. This paper delves into the mathematical and physical principals of the repulsion effect that can be observed in the dispersion curves of coupled Lamb wave modes. This effect is the result from the mechanical coupling of thin-walled solid plates and prevents the crossing of the dispersion curves. The study employs the Scaled Boundary Finite Element Method to calculate the dispersion curves of coupled plates and to simulate their interaction for a weak and ideal coupling. Through a mathematical framework and a physical analogy with simple harmonic oscillators, the paper elucidates the underlying principals of this effect. Furthermore, the paper highlights the practical significance of the repulsion effect in Lamb waves, suggesting its application for testing and monitoring the integrity of multi-layer structures like adhesive bonds, which are important for various industrial applications. A deepened understanding of this effect could contribute to the enhancement of non-destructive evaluation techniques. T2 - ICSV 2024 CY - Amsterdam, Netherlands DA - 08.07.2024 KW - Lamb waves KW - Mode repulsion KW - Scaled Boundary Finite Element Method (SBFEM) KW - Mechanical coupling KW - Dispersion curves PY - 2024 AN - OPUS4-62857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolai, Marcel T1 - On the repulsion effect of coupled Lamb Wave modes N2 - In dieser Arbeit wird der Modenabstoßungseffekt bei gekoppelten Lamb-Wellen untersucht. Wird eine mechanische Kopplung zwischen zwei Platten mit unterschiedlichen Materialeigenschaften eingeführt, so kreuzen sich deren Lamb-Wellen-Moden nicht mehr in den Dispersionsdiagrammen – stattdessen kommt es zur sogenannten Modenabstoßung. Dieser Effekt wird sowohl mathematisch als auch physikalisch erklärt, unter anderem durch eine Analogie zu gekoppelten harmonischen Oszillatoren. Numerische Simulationen mit der Scaled Boundary Finite Element Method (SBFEM) bestätigen die theoretischen Ergebnisse und zeigen eine klare Abhängigkeit der Frequenzaufspaltung vom Kopplungsgrad. Der Effekt ermöglicht Rückschlüsse auf Eigenschaften der Kopplungsschicht und bietet Potenzial für industrielle Anwendungen wie die Überwachung von Klebschichtzuständen in Mehrschichtstrukturen. T2 - Doktorandenseminar CY - Berlin, Germany DA - 18.04.2024 KW - Lamb waves KW - Mode repulsion KW - Scaled Boundary Finite Element Method (SBFEM) KW - Mechanical coupling KW - Dispersion curves PY - 2024 AN - OPUS4-62859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolai, Marcel T1 - On the repulsion effect of coupled Lamb Wave modes N2 - This work investigates the phenomenon of mode repulsion in coupled Lamb wave systems. By mechanically coupling two dissimilar plates using spring elements, it is shown that previously intersecting Lamb wave modes are repelled, avoiding any crossing in the dispersion curves. The effect, rooted in eigenvalue theory and first observed in quantum systems, is explained through both mathematical models and classical analogies with coupled harmonic oscillators. Numerical simulations using the Scaled Boundary Finite Element Method validate the theoretical predictions, revealing a correlation between strain distribution and frequency splitting. The observed mode repulsion provides new insights into interface properties and offers potential for applications such as monitoring adhesive degradation in layered structures. T2 - DAGA 2024 CY - Hannover, Germany DA - 18.03.2024 KW - Lamb waves KW - Mode repulsion KW - Mechanical coupling KW - Dispersion curves KW - Scaled Boundary Finite Element Method (SBFEM) PY - 2024 AN - OPUS4-62858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nicolai, Marcel A1 - Bulling, Jannis A1 - Narayanan, M.M. A1 - Zeipert, Henning A1 - Prager, Jens A1 - Henning, Bernd T1 - Dynamic interface behavior in coupled plates: Investigating Lamb wave mode repulsion with a spring-based model N2 - This study investigates the phenomenon of mode repulsion in Lamb waves propagating through two coupled plates with an elastic interface. Using a spring-based coupling model and the Scaled Boundary Finite Element Method, the dispersion curves of the coupled system are analyzed under various interface conditions—weak coupling, sliding boundary, and perfect coupling. This research highlights how the mechanical stiffness of the interface influences the separation of modes and the emergence of repulsion regions. A novel focus on interface displacements reveals a unique dynamic behavior within the repulsion regions, driven by in-phase and out-of-phase oscillations of the coupled plates. The findings provide a physically grounded explanation of mode repulsion, linking it to the strain patterns in the interface. This insight lays the theoretical groundwork for future applications in material characterization and non-destructive evaluation, enabling more precise selection of Lamb wave modes for scientific and industrial purposes. KW - Lamb waves KW - Mode repulsion KW - Coupled plates KW - Elastic interface KW - Dispersion curves PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642245 DO - https://doi.org/10.1016/j.ultras.2025.107799 SN - 0041-624X VL - 158 SP - 1 EP - 9 PB - Elsevier BV AN - OPUS4-64224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolai, Marcel T1 - Investigating Lamb wave mode repulsion with a spring-based model N2 - Lamb waves are widely utilized in material characterization, non-destructive testing (NDT), and structural health monitoring (SHM). A unique feature of Lamb waves is mode repulsion, where dispersion curves approach each other but do not cross. This phenomenon is observed in both single and multilayer plates and is influenced by wave coupling. While mode repulsion in single plates has been linked to symmetry-breaking effects, its underlying mechanism in multilayer systems remains unclear. This study investigates mode repulsion in a coupled aluminum-polycarbonate plate system using a spring-based interface model. Dispersion curves are computed via the Scaled Boundary Finite Element Method, and time-domain simulations are used to analyze the interface dynamics. Results indicate that repulsion depends on interface stiffness, distinguishing between opening and closing repulsion regions. The study further reveals that mode repulsion corresponds to distinct oscillatory behaviors in the interface, where certain wave modes induce increased coupling spring elongation, leading to localized strain. A coupled harmonic oscillator model effectively explains opening repulsion regions but does not fully capture closing regions. Findings suggest that mode repulsion could be leveraged for non-destructive evaluation of adhesive interfaces, offering insights into bond strength characterization. This research contributes to a deeper understanding of wave interactions in multilayer structures and provides a theoretical foundation for advancing NDT and SHM techniques. T2 - ICU2025 - International Congress on Ultrasonics 2025 CY - Paderborn, Germany DA - 21.09.2025 KW - Lamb waves KW - Mode repulsion KW - Coupled plates KW - Dispersion curves KW - Elastic Interfaces PY - 2025 AN - OPUS4-64225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zeipert, H. A1 - Nellius, T. A1 - Schönlau, N. A1 - Wippermann, M. A1 - Claes, L. A1 - Henning, B. A1 - Nicolai, Marcel A1 - Prager, J. T1 - C6-a3 - Monitoring the curing process of adhesive bonds using selective excitation of guided ultrasonic waves N2 - A measurement setup for the selective excitation of guided ultrasonic waves in adhesively bonded plates is introduced. Changes of the dispersive behaviour of the guided waves during the curing process is known to be accompanied by a change in the propagating waves group velocities. The proposed measurement setup is used to monitor that change during the curing process of an aluminium-epoxy-polycarbonate bond. T2 - 2025 ICU PADERBORN - 9th International Congress on Ultrasonics CY - Paderborn, Germany DA - 21.09.2025 KW - Ultrasonic guided waves KW - Selective excitation KW - Non-destructive testing KW - Adhesive bonding KW - Condition monitoring PY - 2025 DO - https://doi.org/10.5162/Ultrasonic2025/C6-a3 SP - 207 EP - 210 PB - AMA Service GmbH AN - OPUS4-65357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -