TY - CONF A1 - Rogge, Andreas A1 - Thiele, Marc ED - Strauss, ED - Frangopol, ED - Bergmeister, T1 - Damage evolution in concrete under high compressive cyclic loadings N2 - The aim of this project is to get deeper insight into the fatigue behaviour of concrete under cyclic compressive loading. It focuses on the evaluation and modelling of the entire damage process during life-cycle by means of various non-destructive measuring techniques. In numerous tests on cylinders h/d = 30/10 cm under different cyclic loading conditions, the crack development and the damage evolution are monitored using acoustic emission analysis and ultrasonic velocity measurement. The final aim will be the definition of a damage descriptor D based on experimental observations, which can be implemented into a numerical model on a meso-mechanical level. T2 - IALCCE 2012 - 3rd International symposium on life-cycle civil engineering CY - Vienna, Austria DA - 2012-10-03 KW - Concrete KW - Cyclic loading KW - Fatigue KW - Damage PY - 2013 SN - 978-0-415-62126-7 SP - 1307 EP - 1313 PB - CRC Press CY - Boca Raton, Fla. AN - OPUS4-26845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc A1 - Petryna, Y. A1 - Rogge, Andreas ED - Saouma, V. ED - Bolander, J. ED - Landis, E. T1 - Experimental investigation of damage evolution in concrete under high-cycle fatigue N2 - The current knowledge about fatigue behavior of concrete is still incomplete. This concerns especially the progress of fatigue which precedes the fatigue failure. Therefore, the process of fatigue itself under cyclic compressive loading was investigated in a systematic and comprehensive way. The aim of this investigation was to obtain a deeper insight and to provide a better understanding of the damage process occurring within the material during fatigue loading. Concrete cylinders were tested with a number of cycles to failure between 106 and 107. To investigate macroscopic and microscopic changes in the material, various methods of non-destructive and destructive testing were used. One main result was, in contrast to other authors, that the investigated changes in macroscopic material behavior could not be explained only by a development of micro-cracks. The results indicated rather, that the related changes in the fatigue behavior are mainly a result of viscous processes in the hardened cement paste, similar to the processes of creep. Based on the experimental results a description of the possible processes was derived which take place in the material structure during fatigue loading and also leads to the observed macroscopic changes in the material behavior. In this context, the results have shown that in case of isotropic material behavior a stiffness reduction related to a scalar value could not capture the damage effect on the stress-strain-relationship caused by fatigue. T2 - The 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures CY - Berkeley, CA, USA DA - 29.5.2016 KW - Fatigue KW - Concrete KW - High-Cycle KW - Damage Evolution PY - 2016 U6 - https://doi.org/10.21012/FC9.302 SP - 1 EP - 9 AN - OPUS4-36686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc A1 - Petryna, Y. A1 - Rogge, Andreas ED - Saouma, V. ED - Bolander, J. ED - Landis, E. T1 - Experimental investigation of damage evolution in concrete under high-cycle fatigue N2 - The current knowledge about fatigue behavior of concrete is still incomplete. This concerns especially the progress of fatigue which precedes the fatigue failure. Therefore, the process of fatigue itself under cyclic compressive loading was investigated in a systematic and comprehensive way. The aim of this investigation was to obtain a deeper insight and to provide a better understanding of the damage process occurring within the material during fatigue loading. Concrete cylinders were tested with a number of cycles to failure between 106 and 107. To investigate macroscopic and microscopic changes in the material, various methods of non-destructive and destructive testing were used. One main result was, in contrast to other authors, that the investigated changes in macroscopic material behavior could not be explained only by a development of micro-cracks. The results indicated rather, that the related changes in the fatigue behavior are mainly a result of viscous processes in the hardened cement paste, similar to the processes of creep. Based on the experimental results a description of the possible processes was derived which take place in the material structure during fatigue loading and also leads to the observed macroscopic changes in the material behavior. In this context, the results have shown that in case of isotropic material behavior a stiffness reduction related to a scalar value could not capture the damage effect on the stress-strain-relationship caused by fatigue. T2 - The 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures CY - Berkeley, CA, USA DA - 29.5.2016 KW - Fatigue KW - Concrete KW - High-cycle KW - Damage evolution PY - 2016 U6 - https://doi.org/10.21012/FC9.302 SP - 1 EP - 9 AN - OPUS4-38242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc A1 - Petryna, Y. A1 - Rogge, Andreas A1 - Baeßler, Matthias ED - Beushausen, Hans T1 - Experimental investigation of fatigue process in concrete under high-cycle loading N2 - Fatigue is of relevance not only for metals but also for concrete. The current knowledge about fatigue behaviour of concrete is, however, incomplete. This concerns especially the progress of fatigue which precedes the fatigue failure. Some macroscopic effects of this process are well known but the governing material changes behind them are still less studied. The focus of the present contribution lay on a systematic and comprehensive investigation of the fatigue process under cyclic compressive loading. The aim was to obtain a deeper insight and to provide a better understanding of the damage process in the material. Cylindrical specimens were tested with a number of cycles to failure between 106 and 107. Various methods of non-destructive and destructive testing were used to investigate macroscopic and microscopic changes in the material. One main result was that the changes in the macroscopic material behaviour could not be explained only by the development of micro cracks. The results indicated that the related changes in the fatigue behaviour originate rather from viscous processes in the cement stone, similar to the process of creep. A sound description of the possible processes was derived from the obtained experimental results which concerns material structure during fatigue loading. It has been shown that in case of isotropic material behaviour a stiffness reduction related to a scalar value could not capture the damage effect on the stress-strain relationship caused by fatigue. T2 - fib symposium 2016 CY - Cape Town, South Africa DA - 21.11.2016 KW - High-cycle KW - Fatigue KW - Concrete KW - Damage evolution PY - 2016 SN - 978-2-88394-121-2 VL - 2016 SP - 1 EP - 10 PB - University of Cape Town CY - Cape Town AN - OPUS4-38720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, Vivian A1 - Thiele, Marc A1 - Pirskawetz, Stephan A1 - Meng, Birgit A1 - Rogge, Andreas T1 - Characterizing the Fatigue Behavior of High-Performance Concrete for Wind Energy Structures N2 - Severe mechanical fatigue conditions for worldwide proliferating windfarms are a Major challenge for high-performance concrete in towers, connecting joints and foundations of wind turbines. High-performance concrete offers potential for the application in offshore windfarms, not only regarding its good mechanical, but also chemical resistivity due to low diffusivity in the highly densified microstructure. For a more reliable fatigue assessment, monitoring based on nondestructive testing can be a valuable complement to design rules. Both approaches demand reliable experimental data, information about scalability and the development of standardized testing methods. This article presents results of an ongoing research program of BAM (Bundesanstalt für Materialforschung und -prüfung), which is a part of a joint national project (WinConFat) funded by the German Federal Ministry for Economic Affairs and Energy. The subproject implemented by BAM examines the fatigue behavior in dependence of size and slenderness for varying concrete strength at different stress levels. Besides fatigue strength, nondestructive testing is carried out additionally. Methods used are strain measurement and ultrasonic testing. The change of strain, stiffness and ultrasonic pulse velocity in the fatigue process is discussed. Results disclose a deeper insight into the damage process under cyclic loading of high-performance concrete and contribute to improve nondestructive monitoring. T2 - LORCENIS - Long Lasting Reinforced Concrete fpr Energy Infrastructure under Severe Operating Conditions CY - Ghent, Belgium DA - 10.09.2019 KW - Compressive Cyclic loading KW - Fatigue KW - High-strength concrete KW - Non destructive testing KW - Ultrasonic testing PY - 2019 SN - 978-9-463-88638-3 SP - 1 EP - 4 AN - OPUS4-49500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, Vivian A1 - Pirskawetz, Stephan A1 - Thiele, Marc A1 - Rogge, Andreas T1 - Experimental investigation of size effect on fatigue behavior of high strength concrete - concept and preliminary results N2 - The worldwide spread of windfarms brings new challenges, especially for concrete structures as a part of towers, connecting joints and foundations of wind turbines. High-cyclic loadings in such structures lead to a high relevance of the subject of fatigue. A proper assessment of the fatigue strength of concrete demands therefore a basis of reliable experimental data and the development of standardized testing methods. This article presents first results of an ongoing research program of BAM (Bundesanstalt für Materialforschung und -prüfung) which is a part of a joint project (WinConFat) funded by the German Federal Ministry for Economic Affairs and Energy. The subproject investigates the effects of size and slenderness of the specimens on the fatigue behaviour of high strength concrete at different stress levels. Not only the fatigue strength, but also the fatigue process itself is monitored by means of several measurement methods. Strain measurements are used to calculate the load dependent elastic modulus in the fatigue hysteresis as indicators for fatigue development. Furthermore, the application of non-destructive methods like acoustic emission analysis and ultrasonic measurement in laboratory tests gives a deeper insight into damage processes under cyclic loading. The results shall be used to improve design rules for concrete members under fatigue load and to develop or improve non-destructive techniques for in-service structural health monitoring. T2 - 5th International fib Congress: Better - Smarter - Stronger CY - Melbourne, Australia DA - 08.10.2018 KW - Acoustic emission testing KW - Compressive cyclic loading KW - Fatigue KW - High-strength concrete KW - Non-destructive testing KW - Size effect KW - Slenderness effect KW - Ultrasonic testing PY - 2018 SN - 978-1-877040-14-6 SP - 1 EP - 11 AN - OPUS4-46408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -