TY - JOUR A1 - Bovtun, Viktor Petrovic A1 - Döring, Joachim A1 - Bartusch, Jürgen A1 - Gaal, Mate A1 - Erhard, Anton A1 - Kreutzbruck, Marc A1 - Yakymenko, Y. T1 - Enhanced electromechanical response of ferroelectret ultrasonic transducers under high voltage excitation JF - Advances in applied ceramics N2 - Polypropylene based ferroelectret films exhibit a strong electromechanical activity and provide a promising solution for the air coupled ultrasonic (ACUS) transducers. Ultrasonic transmission between two air coupled ferroelectret transducers in dependence on the amplitude and polarity of the high voltage exciting pulse revealed a strongly non-linear electromechanical response of the ferroelectret transmitter which provides an increase in the transmitter efficiency. The authors present a simple model describing both promotion and competition of the piezoelectric and electrostriction contributions, as well as increase in the transducer constant under high voltage excitation. Enlargement of the inverse transducer constant of the polypropylene ferroelectret film by a factor of 4 was demonstrated. The non-linear properties of the polypropylene ferroelectrets result in a strong increase in their ACUS figure of merit under the high voltage excitation, which exceeds the results of their technological optimisation. Consequently, enhancement of the ACUS system transmission by 12 dB and signal to noise ratio by 32 dB was achieved. KW - Air coupled ultrasonics KW - Non-contact transducers KW - Ferroelectrets KW - Piezoelectric effect KW - Electrostriction KW - Cellular polypropylene KW - Ultrasonic transducer PY - 2013 DO - https://doi.org/10.1179/1743676112Y.0000000021 SN - 1743-6753 SN - 1743-6761 VL - 112 IS - 2 SP - 97 EP - 102 PB - Maney CY - London AN - OPUS4-27880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Döring, Joachim A1 - Bovtun, V. A1 - Gaal, Mate A1 - Bartusch, Jürgen A1 - Erhard, Anton A1 - Kreutzbruck, Marc A1 - Yakymenko, Y. T1 - Piezoelectric and electrostrictive effects in ferroelectret ultrasonic transducers JF - Journal of applied physics N2 - Electromechanical response of polypropylene ferroelectret transducers under application of high-voltage pulses was measured by laser Doppler vibrometry and compared with results of ultrasonic through-air transmission between two ferroelectret transducers. The electromechanical response was completely explained by piezoelectric and electrostrictive effects. The electrostrictive effect dominates at high voltages and provides significant enlargement of the transducer constant, up to factor of 2.5. The induced strain of 1.7% was achieved at – 2000 V. The nonlinear ultrasonic transmission was shown to be well described by the piezoelectric and electrostrictive response of transmitter, except in the range of high negative exciting voltages where some limitation of the transmitted signal was observed. This limitation seems not to be a fundamental one and does not abolish the advantages of high-voltage excitation of polypropylene ferroelectret transducers. KW - Electromechanical effects KW - Ferroelectric devices KW - Piezoelectric transducers KW - Piezoelectricity KW - Ultrasonic transducers KW - Ultrasonic transmission KW - Cellular polypropylene KW - Ferroelectret KW - Electrostriction PY - 2012 DO - https://doi.org/10.1063/1.4759052 SN - 0021-8979 SN - 1089-7550 VL - 112 IS - 8 SP - 084505-1 - 084505-6 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-26806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Bartusch, Jürgen A1 - Döring, Joachim A1 - Dohse, Elmar A1 - Lange, Thorid A1 - Hillger, W. A1 - Kreutzbruck, Marc T1 - Air-coupled ferroelectret ultrasonic transducers applied to testing of fiber-reinforced polymers T2 - 12th International conference of the Slovenian society for non-destructive testing - Application of contemporary non-destructive testing in engineering (Proceedings) T2 - 12th International conference of the Slovenian society for non-destructive testing - Application of contemporary non-destructive testing in engineering CY - Portoroz, Slovenia DA - 2013-09-04 KW - Air-coupled ultrasound KW - Transducer KW - Ferroelectret KW - Cellular polypropylene KW - Fiber-reinforced polymers PY - 2013 SN - 978-961-93537-0-7 SP - 43 EP - 50 AN - OPUS4-29927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Dohse, Elmar A1 - Bartusch, Jürgen A1 - Köppe, Enrico A1 - Kreutzbruck, Marc A1 - Hillger, W. A1 - Amos, J. M. T1 - Ultrasonic testing of adhesively bonded joints using air-coupled cellular polypropylene transducers T2 - ECNDT 2014 - 11th European conference on non-destructive testing (Proceedings) N2 - In air-coupled ultrasonic testing, the impedance mismatch between the transducer and the air is commonly being solved by adding matching layers to composite transducers. To avoid the difficult technological procedure regarding matching layers, some new piezoelectric materials have been proposed. Most promising are ferroelectrets, which are charged cellular polymers, having ferroelectric and consequently piezoelectric properties. In particular, the extreme softness of cellular polypropylene (cPP) leads to a high piezoelectric constant and to a good impedance match with the air, making matching layers redundant. Its elasticity modulus below 1 MPa causes an additional effect not observed with common piezoelectric materials: that is the electrostrictive effect, here defined as the thickness change due to the attractive force between the transducer electrodes. This effect exceeds the piezoelectric effect at excitation voltages over 1 kV. The extreme softness of cPP leads also to high flexibility, enabling easy focusing by bending the transducer. We have developed air-coupled ultrasonic transducers based on cPP. This includes the electrical matching networks for the transmitter and for the receiver. The transmitter is excited with voltages up to 2.5 kV, so that the electrostrictive effect dominates, leading to sound pressure around 145dB at the transducer surface. These transducers have been applied for testing carbon-fiber-reinforced polymer plates, adhesive joints and other composite structures. Here we report about ultrasonic transmission of two types of adhesive joints. The first one is multi-layer aluminium components with some artificial disbonds, which are common in aerospace industry, and the second one is an aluminium-steel joint with polyurethane adhesive, which is used in automotive industry. T2 - ECNDT 2014 - 11th European conference on non-destructive testing CY - Prague, Czech Republic DA - 06.10.2014 KW - Air-coupled KW - Ultrasonic testing KW - Ferroelectret KW - Cellular polypropylene KW - Transducer KW - Adhesive joint PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-317204 SN - 978-80-214-5018-9 SP - 1 EP - 8 PB - Brno University of Technology AN - OPUS4-31720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Dohse, Elmar A1 - Bartusch, Jürgen A1 - Kreutzbruck, Marc T1 - Luftschallprüfung von CFK mit planaren und fokussierenden Wandlern T2 - DACH-Jahrestagung 2015 T2 - DACH-Jahrestagung 2015 CY - Salzburg, Austria DA - 2015-05-11 KW - Air-coupled KW - Ultrasonic testing KW - Ferroelectret KW - Cellular polypropylene KW - Transducer KW - Adhesive joint PY - 2015 SN - 978-3-940283-68-9 IS - DGZfP BB 152 SP - 1 EP - 9 AN - OPUS4-34629 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -