TY - JOUR A1 - Zutta Villate, J. M. A1 - Viviana Rojas, J. A1 - Hahn, Marc Benjamin A1 - Anselmo Puerta, J. T1 - Synthesis of 198Au nanoparticles sub 10 nm due optimization on local dose by Monte Carlo simulations for cancer treatment JF - Journal of Radioanalytical and Nuclear Chemistry N2 - To enhance the biological effects of radiation damage in cancerous cells, we present an alternative approach to the use of gold nanoparticles (AuNP), focusing on the synthesis and characterization of highly monodisperse, spherical radioactive gold nanoparticles 198AuNP. The size of the AuNP size was optimized with the help of Geant4/TOPAS particle scattering simulations, and energy deposition per nm3 per decay for varying radii (2–10 nm) was evaluated. This work is the foundation for ongoing experimental work to evaluate cell death induced by 198AuNP which aims for the use of radioactive gold nanoparticles in cancer treatment. KW - AuNP KW - Beta decay KW - Beta particle KW - Brachytherapy KW - Cancer treatment KW - Nanoparticles KW - Nanoparticle KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Gamma ray KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - Synthesis KW - TEM KW - OH radicals KW - Particle scattering KW - Radiation damage KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio PY - 2022 DO - https://doi.org/10.1007/s10967-022-08355-5 SN - 1588-2780 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-55132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - What can we learn from polymer degradation by radiation? N2 - It is discussed what can be learned from polymer degradation, especially of biopolymers such as DNA and proteins. Synergetci effects of combining methods for structural and chemical analysis as well as Monte-Carlo simulations are presented. T2 - Material Strategy CY - Beelitz, Germany DA - 12.10.2022 KW - Polymer KW - Polymer degradation KW - DNA KW - Protein KW - XPS KW - ESEM KW - Raman KW - MCS KW - Monte-Carlo Simulations PY - 2022 AN - OPUS4-56123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined.[1] Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. [2] These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for ongoing experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. T2 - NALS 2022 CY - Santander, Spain DA - 27.04.2022 KW - AuNP KW - Beta decay KW - beta particle KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - particle scattering KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio PY - 2022 AN - OPUS4-54775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - BioSAXS models for TOPAS/Geant4 N2 - Models for TOPAS/Geant4 to estimate the microscopic dose received by biomolecules during bioSAXS experiments. The C++ classes in this repository extend the functionality of the TOPAS (http://www.topasmc.org/) Monte-Carlo program, which is itself a wrapper of the Geant4 MCS Toolkit (http://geant4.org). KW - TOPAS KW - TOPAS-nBio KW - Geant4 KW - Geant4-DNA KW - MCS KW - Microdosimetry KW - Protein KW - Proteins KW - Particle scattering KW - G5P KW - GV5 KW - SAXS KW - Monte-Carlo simulation KW - Dosimetry KW - Micorscopic dose-damage relation PY - 2022 UR - https://github.com/MarcBHahn/TOPAS-bioSAXS-dosimetry DO - https://doi.org/10.26272/opus4-55751 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-55751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Dietrich, P. M. A1 - Radnik, Jörg T1 - The change of DNA radiation damage upon hydration: In-situ observations by near-ambient-pressure XPS N2 - Ionizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - Cancer treatment KW - DNA KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - TOPAS KW - TOPAS-nbio KW - particle scattering KW - Simulation KW - Radiolysis KW - Radiation therapy KW - Radiotherapy KW - LEE KW - Low energy electrons KW - MCS KW - Base damage KW - Base loss KW - DNA radiation damage KW - Direct damage KW - Dissociative electron transfer (DET) KW - Dissociative electron attachment (DEA) KW - Double-strand break (DSB) KW - Hydrated DNA KW - Hydrated electron KW - Ionization KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Microdosimetry KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - OH radical KW - PES KW - Prehydrated electron KW - Quasi-direct damage KW - Radiation damage KW - Radical KW - Reactive oxygen species KW - ROS KW - Single-strand break (SSB) KW - XPS KW - Xray KW - Xray photo electron spectrocopy KW - presolvated electron PY - 2023 UR - https://www.nature.com/articles/s42004-021-00487-1 AN - OPUS4-57063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Irradiation of biomolecules in liquid with electrons of different linear energy transfer N2 - The damage caused by ionizing radiation to DNA and proteins is the reason to treat cancer by radiation therapy. A better understanding of the molecular processes and quantification of the different damaging mechanisms is the prerequisite to develop more efficient therapies. Hereby the understanding of the processes involved in the damage to DNA are of key interest due to its central role in reproduction and mutation. For radiation with low linear energy transfer (LET), most of the damage is caused by the secondary particles produced by scattering of the ionizing radiation with water. Thereby a multitude of species are produced, whereby especially kinetic low energy electrons, prehydrated electrons, OH-radicals and ions are of importance. With higher LET the relative amount of the direct damaging effects increases. This is especially important considering the increased usage of high LET particles in radiation therapy. Therefore, the quantification of the contribution to DNA damage of direct and indirect effects and the different secondary species is of high interest due to the increase of radio biological efficiency when applying high LET radiation. Here we present an approach to investigate the relative contributions to DNA strand break yield for radiation of different LET within a single electron microscope in combination with electron scattering simulations. T2 - International workshop on radiation damage to DNA CY - Aussois, France DA - 27.05.2018 KW - Radiation damage KW - LET KW - Geant4 KW - DNA KW - Radiation therapy KW - Hydroxyl radical KW - Low energy electrons KW - Dosimetry KW - Microdosimetry KW - Electron irradiation KW - Sem KW - Linear energy transfer KW - MCS KW - Monte-Carlo simulations PY - 2018 AN - OPUS4-45103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Simulational tools in nanoparticle research: Micromagnetics and particle scattering N2 - Simulational tools are applied to investigate the physical properties of nanoparticles. For the description of radioactive gold nanoparticles, particles scattering simulations are performed with the Geant4 monte carlo simulation toolkit. The temperature dependent behaviour of the magnetization dynamics of different magnetic nanoparticles are simulated with the object oriented micormagnetic framework (OOMMF). T2 - NanoBioAp CY - LLanes, Spain DA - 23.05.2019 KW - Monte Carlo KW - Monte-Carlo simulation KW - MCS KW - Nanoparticle KW - AuNP KW - Dosimetry KW - Radioactive NP KW - Microdosimetry KW - Geant4 KW - OOMMF KW - Micromagnetism KW - Simulation KW - Magnetic nanoparticle KW - LLG PY - 2019 AN - OPUS4-48110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - TOPAS cell model with nanoparticles N2 - These files contain cell models for TOPAS/Geant4 and the inclusion of nano particles in particle scattering simulations. A simple spherical cell with nanoparticles can be generated in a fast manner. The user has the option to include the following organelles: nucleus, mitochondria, cell membrane. Additionally nanoparticles can be included in the cytosol and at the surface of the nucleus and/or the mitochondria. The C++ classes in this repository extend the functionality of the TOPAS (http://www.topasmc.org/) Monte-Carlo program, which is itself a wrapper of the Geant4 MCS Toolkit (http://geant4.org). The sourcecode together with examples and scorers are provided. "If you use this extension please cite the following literature: Hahn, M.B., Zutta Villate, J.M. "Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles." Sci Rep 11, 6721 (2021). https://doi.org/10.1038/s41598-021-85964-2 " KW - Monte-Carlo simulation KW - MCS KW - Geant4 KW - TOPAS KW - TOPAS-nBio KW - Dosimetry KW - Nanoparticles KW - Nanoparticle KW - AuNP KW - Gold KW - Microdosimetry KW - Targeted nanoparticle KW - Simulation KW - Particle scattering KW - Cell KW - Nucleus KW - Mitochondria KW - Cancer therapy KW - Radiation therapy PY - 2020 UR - https://github.com/BAMresearch/TOPAS-CellModels UR - https://github.com/MarcBHahn/TOPAS-CellModels DO - https://doi.org/10.26272/opus4-51150 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Simulaciónes de Montecarlo II: El scoring en las superficies N2 - En esta presentación desarrollaremos un ejemplo de aplicación para la dispersión de partículas utilizando el método de simulación de Monte- Carlo. Se discutirá el caso de las nanopartículas de oro radiactivo y como obtener informacions sobre diferente tipos de particulas pasando las superfices. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Colombia DA - 16.03.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Particle scattering simulation KW - Particle scattering simulations KW - Radioactive decay KW - Radioactive nanoparticle KW - Desintegracion radioactiva KW - Geant4 KW - Monte-Carlo simulations KW - Método de Montecarlo KW - Topas KW - nanoparticula PY - 2020 AN - OPUS4-50564 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Setup of a Particle Scattering Simulation environment N2 - A step by step introduction to the setup of a particle scattering simulation is given. Followed by an installation session. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Columbia DA - 12.02.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Monte-Carlo simulations KW - Particle scattering simulations KW - Scattering KW - Simulations KW - Debian KW - Linux KW - Topas KW - C++ KW - Topas-nbio KW - Git KW - Cmake PY - 2020 AN - OPUS4-50366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -