TY - CONF A1 - Korzen, Manfred A1 - Rodrigues, J.P.C. A1 - Laím, L.M.S. T1 - Fire resistance tests on circular concrete columns N2 - Most of the previous studies on reinforced concrete columns with elastically restrained thermal elongation were carried out on square, rectangular or ‘+’-shaped cross sections. The fire resistance of these columns is probably more compromised than in circular columns due to the phenomenon of concrete detachment in the corners of the cross-section. In order to examine the influence of several parameters on the behaviour in fire of circular reinforced concrete columns with restrained thermal elongation, several fire resistance tests were carried out. The parameters tested were load, restraint level, slenderness of the column and the longitudinal reinforcement ratio. In the fire resistance tests the specimens were exposed to the ISO 834 Standard fire curve and the critical time and temperature and failure modes were determined. The test results mainly indicated that the spalling phenomenon may also occur in circular columns and so reducing its fire resistance. The restrained level might not so much relevant concerning the fire resistance of circular reinforced concrete columns. T2 - Interflam 2013 - 13th International fire science & engineering conference CY - Egham, Surrey, UK DA - 24.06.2013 KW - Fire KW - Column KW - Concrete KW - Circular KW - Restraining PY - 2013 SN - 978-0-9556548-9-3 SP - 1119 EP - 1130 PB - Interscience Communications Limited AN - OPUS4-29695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rodrigues, J.P.C. A1 - Laím, L.M. A1 - Korzen, Manfred T1 - Fire behaviour of circular concrete columns with restrained thermal elongation N2 - Most of the previous studies on reinforced concrete columns with elastically restrained thermal elongation were carried out on square, rectangular or '+'-shaped cross sections. The number of fire resistance tests on circular reinforced concrete columns with elastically restrained thermal elongation is still very small. In order to examine the influence of several parameters on the behaviour in fire of this type of columns several fire resistance tests were carried out. The parameters tested were the load and restraint level, slenderness of the column and longitudinal reinforcement ratio. In the fire resistance tests the specimens were exposed to the ISO 834 standard fire curve and the critical time (fire resistance) and temperature and failure modes were determined. The test results showed that the spalling phenomenon may occur in circular columns and so reducing its fire resistance. The increasing of the load level led to a reduction while the increasing of the longitudinal reinforcement ratio or the decreasing of the slenderness of the columns led to an increasing of their fire resistance. The restraint level might not be much relevant on the fire resistance of circular reinforced concrete columns. KW - Fire KW - Resistance KW - Concrete KW - Circular KW - Column KW - Restraining PY - 2014 U6 - https://doi.org/10.3151/jact.12.289 SN - 1346-8014 VL - 12 IS - 9 SP - 289 EP - 298 CY - Tokyo AN - OPUS4-31611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Huismann, Sven A1 - Zeiml, M. A1 - Korzen, Manfred A1 - Millard, A. ED - Millard, A. ED - Pimienta, P. T1 - Engineering Modelling N2 - This chapter presents the most commonly used approach to analyse the thermo-mechanical behaviour of concrete structures subjected to high temperatures as in the case of fire loading. Prescriptions of the Eurocode are detailed for the thermal as well as the mechanical analysis. Finally, recommendations from two national (Austrian and German) guidelines give some improvements for Underground infrastructure. KW - Concrete KW - High temperature KW - Stress-strain-relation PY - 2019 SN - 978-3-030-11995-9 U6 - https://doi.org/10.1007/978-3-030-11995-9 SN - 2213-204X SN - 2213-2031 SP - 15 EP - 25 PB - Springer CY - Cham, Switzerland AN - OPUS4-51186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Meftah, F. A1 - Pesavento, F. A1 - Davie, C. A1 - Dal Pont, S. A1 - Zeiml, M. A1 - Korzen, Manfred A1 - Millard, A. ED - Millard, A. ED - Pimienta, P. T1 - Advanced Modelling N2 - In this chapter, advanced models based on a General thermo-Hydro-Mechanical (THCM) Framework are considered. In These approaches, the concrete is considered as a porous medium, the pores of which are partly filled by gas (a mixture of air and vapour) and water. KW - Concrete KW - High temperature KW - Stress-strain-relation PY - 2019 SN - 978-3-030-11994-2 SN - 978-3-030-11995-9 U6 - https://doi.org/10.1007/978-3-030-11995-9 SN - 2213-204X SN - 2213-2031 SP - 27 EP - 65 PB - Springer CY - Cham, Switzerland AN - OPUS4-50174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pimienta, Pierre A1 - McNamee, Robert A1 - Robert, Fabienne A1 - Boström, Lars A1 - Huang, Shan-Shan A1 - Mróz, Katarzyna A1 - Davie, Colin A1 - Mohaine, Siyimane A1 - Alonso, Maria Cruz A1 - Bodnarova, Lenka A1 - Bosnjak, Josipa A1 - Dal Pont, Stefano A1 - Dao, Vinh A1 - Dauti, Dorjan A1 - Dehn, Frank A1 - Felicetti, Roberto A1 - Hager, Izabela A1 - Hela, Rudolf A1 - Hozjan, Tomaz A1 - Juknat, Michael A1 - Jumppanen, Ulla-Maija A1 - Kirnbauer, Johannes A1 - Kolsek, Jerneja A1 - Korzen, Manfred A1 - Lakhani, Hitesh A1 - Lion, Maxime A1 - Lo Monte, Francesco A1 - Maluk, Cristian A1 - Meftah, Fekri A1 - Miah, Md Jihad A1 - Millard, Alain A1 - Mindeguia, Jean-Christophe A1 - Moreau, Bérénice A1 - Msaad, Yahia A1 - Ozawa, Mitsuo A1 - Pesavento, Francesco A1 - Pham, Duc Toan A1 - Pistol, Klaus A1 - Rickard, Ieuan A1 - Rodrigues, Joao Paulo Correia A1 - Roosefid, Mohsen A1 - Schneider, Martin A1 - Sharma, Umesh Kumar A1 - Sideris, Kosmas A1 - Stelzner, Ludwig A1 - Weber, Benedikt A1 - Weise, Frank T1 - Recommendation of RILEM TC 256-SPF on fire spalling assessment during standardised fire resistance tests: complementary guidance and requirements N2 - The recommendation is based on the co-authors’ work organized by the RILEM TC 256-SPF “Spalling of concrete due to fire: testing and modelling”. It aims to provide useful information, guidance and best practices in fire spalling assessment to laboratories that perform large-scale tests based on fire resistance test standards. It provides guidance on the spalling observation techniques during testing, as well as post-test spalling quantification/assessment methods. This document is intended to be used in conjunction with the fire resistance test standards, e.g. EN 1363-1 and ISO 834-1. KW - Concrete KW - Fire spalling KW - Large scale tests KW - Standardised fire resistance tests PY - 2024 U6 - https://doi.org/10.1617/s11527-023-02248-z SN - 1871-6873 VL - 57 IS - 1 SP - 1 EP - 12 PB - Springer CY - Dordrecht AN - OPUS4-59288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -