TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Bünker, J. T1 - Fire stability of glass-fibre sandwich panels: The influence of core materials and flame retardants N2 - Fire resistance has become a key property for structural lightweight sandwich components in aviation, shipping, railway vehicles, and construction. The development of future composite materials and components demands adequate test procedures for simultaneous application of compression and fully developed fire. Therefore an intermediate-scale approach (specimen size = 500 mm x 500 mm) is applied with compressive loads (up to 1 MN) and direct application of a burner to one side of the specimens, as established in aviation for severe burn-through tests. The influence of different core structures (polyvinylchloride foam, polyisocyanorate foam reinforced by stitched glass bridges, and balsa wood) was investigated for glass-fibre-reinforced sandwich specimens with and without flame retardants applied on the fabrics, in the matrix, and on surface for each specimen at the same time. Times to failure were increased up to a factor of 4. The intumescent coating prolongs the time to failure significantly. What is more, using the intrinsic potential of the front skin together with the core to protect a load bearing back skin in sandwich panels, the design of the core – here using the wood core – is the most promising approach. KW - Fire resistance KW - Fire stability KW - Glass-fibre-reinforced plastics KW - Composite KW - Core materials PY - 2017 U6 - https://doi.org/10.1016/j.compstruct.2016.11.027 SN - 0263-8223 SN - 1879-1085 VL - 160 SP - 1310 EP - 1318 PB - Elsevier AN - OPUS4-38622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Korzen, Manfred ED - Pavese, Alberto T1 - Hybrid fire testing via the substructuring method N2 - Originally introduced in the field of earthquake engineering hybrid testing, i.e. the simultaneous combined application of numerical simulation techniques and execution of experiments, is nowadays used in different areas of experimental analysis. The focus of this paper is on the presentation of the so-called substructuring method as a hybrid method in fire engineering. Motivation are EU standards for fire resistance tests of columns or beams. According to these codes building elements are considered as stand-alone elements whereas in real fires each building element interacts with its adjacent elements. Therefore, to conduct a fire test in a more realistic fashion, the concept of hybrid substructuring as a special experimental technique has been adopted to fire engineering. Due to this concept the entire building, which is exposed to a real fire, is decomposed into two parts. One part is represented by the building element under test in a special furnace, whereas the remaining building environment is simulated by a model, based on the equations of thermomechanics. The paper addresses the historical development of the substructuring method in fire engineering supplemented by presentation of the results of realized fire resistance tests in substructuring mode on different types of specimens. T2 - 7th International Conference on Advances in Experimental Structural Engineering CY - Pavia, Italy DA - 6 September 2017 KW - Hybrid testing PY - 2017 SN - 978-88-85701-01-4 SP - 945 EP - 947 PB - EUCENTRE Foundation CY - Pavia, Italy AN - OPUS4-45760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Korzen, Manfred T1 - Anwendung der Substrukturtechnik als hybride Prüfmethode im Brandingenieurwesen N2 - In klassischen Feuerwiderstandsprüfungen wird die Tragfähigkeit eines einzelnen Tragwerkselementes (z. B. Stütze) unter Feuereinwirkung bestimmt. In realen Brandsituationen interagieren jedoch brandbeanspruchte Bauteile eines Gebäudes immer mit dem angrenzenden Tragwerk. Für eine genauere Bewertung der Tragfähigkeit werden deshalb spezielle experimentelle Methoden benötigt, die eine Interaktion zwischen geprüftem Bauteil und Tragwerk in Feuerwiderstandsprüfungen berücksichtigen. Zur Umsetzung dieses Anspruchs konnte in Kooperation mit dem Joint Research Centre (JRC) in Ispra, Italien, die bereits im Erdbebeningenieurwesen eingesetzte Substrukturmethode erfolgreich zur innovativen Nutzung des Stützenprüfofens der BAM portiert werden. Nach dieser Methode wird das gesamte Gebäude in zwei Teile zerlegt: Ein Teil entspricht dem zu prüfenden Bauteil, während der Rest des Gebäudes online durch ein analytisches oder numerisches Modell simuliert wird. Im Vortrag werden entsprechende Ergebnisse zahlreicher Experimente neben Erläuterungen zu Hard- und Software präsentiert. Abschließend werden weitere Forschungsaktivitäten des Fachbereiches Brandingenieurwesen vorgestellt. T2 - Kolloquium des Instituts für Baustatik & Konstruktion der ETH Zürich CY - ETH Zürich, Switzerland DA - 11. April 2017 KW - Feuerwiderstand KW - Hybride Versuchstechnik PY - 2017 AN - OPUS4-46599 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Timme, Sebastian A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Schartel, Bernhard T1 - Fire stability of carbon fiber reinforced polymer shells on the intermediate-scale N2 - The fire stability of carbon fiber reinforced polymer (CFRP) shell structures was investigated using an intermediate-scale test setup. The shell specimens are representative of typical load-bearing CFRPs in modern civil aviation. The CFRP shell specimens were exposed to a fully developed fire with direct flame impingement to one side at a heat flux of 182 kW/m2. Specimens were simultaneously loaded with constant compressive force equal to 40% of the ultimate failure load. CFRP shells and four different fire retarding configurations, using integrated protective layers, were investigated. Unprotected CFRP specimens failed after just 27 s. Specimens with integrated protective layers with low heat conductivity and high burn-through resistance showed the most promising results. An integrated titanium foil decelerated the decomposition of the epoxy matrix and increased the time to failure by 68% compared to the unprotected CFRP shell. KW - Fire stability KW - Carbon fiber reinforced polymer (CFRP) KW - Thermomechanical properties KW - Buckling KW - Fully developed fire PY - 2017 U6 - https://doi.org/10.1016/j.compstruct.2017.07.025 SN - 0263-8223 SN - 1879-1085 VL - 178 SP - 320 EP - 329 PB - Elsevier Ltd. AN - OPUS4-41283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -