TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Naumann, Maurice T1 - Structural integrity of sandwich structures in fire: an intermediate-scale approach JF - Composite interfaces N2 - A test set-up in intermediate scale was conceived to investigate the structural integrity of materials under fire. The task was to develop a realistic test scenario targeting component-like behaviour. Carbon-fibre-reinforced sandwich specimens (500 X 500 X 20 mm) were used to examine failure mechanisms, times to failure and critical failure loads under compression. Fire tests were performed with fully developed fire applied to one side of the specimen by an oil burner. In a first test series, the applied load was varied, but the fully developed fire remained unchanged. In general, times to failure were short. Decreased load levels resulted in prolonged times to failure and led to a different failure mechanism. Results obtained in the test series were compared with a bench-scale study (150 X 150 X 20 mm) investigating identical material. The comparison clearly revealed the influence of size on the time to failure and the load-bearing capacity. KW - Fire testing KW - Structural integrity KW - Carbon-fibre-reinforced plastics KW - Fully developed fire KW - Composites PY - 2013 DO - https://doi.org/10.1080/15685543.2013.816620 SN - 0927-6440 SN - 1568-5543 VL - 20 IS - 9 (Special Issue: ECCM15: Part 3) SP - 741 EP - 759 PB - VSP CY - Zeist AN - OPUS4-29647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Korzen, Manfred A1 - Rodrigues, J.P.C. A1 - Laím, L.M.S. T1 - Fire resistance tests on circular concrete columns T2 - Interflam 2013 - 13th International fire science & engineering conference (Proceedings) N2 - Most of the previous studies on reinforced concrete columns with elastically restrained thermal elongation were carried out on square, rectangular or ‘+’-shaped cross sections. The fire resistance of these columns is probably more compromised than in circular columns due to the phenomenon of concrete detachment in the corners of the cross-section. In order to examine the influence of several parameters on the behaviour in fire of circular reinforced concrete columns with restrained thermal elongation, several fire resistance tests were carried out. The parameters tested were load, restraint level, slenderness of the column and the longitudinal reinforcement ratio. In the fire resistance tests the specimens were exposed to the ISO 834 Standard fire curve and the critical time and temperature and failure modes were determined. The test results mainly indicated that the spalling phenomenon may also occur in circular columns and so reducing its fire resistance. The restrained level might not so much relevant concerning the fire resistance of circular reinforced concrete columns. T2 - Interflam 2013 - 13th International fire science & engineering conference CY - Egham, Surrey, UK DA - 24.06.2013 KW - Fire KW - Column KW - Concrete KW - Circular KW - Restraining PY - 2013 SN - 978-0-9556548-9-3 SP - 1119 EP - 1130 PB - Interscience Communications Limited AN - OPUS4-29695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred T1 - An intermediate-scale fire testing approach on the structural integrity of lightweight materials T2 - Fire and materials 2013 - 13th International conference and exhibition (Proceedings) N2 - Carbon or glass über composites and Sandwich structures, the lightweight materials of choice for aviation, naval, offshore and construction show an enormous energy saving potential. Their combination of excellent specific mechanical properties, high corrosive resistance and thermal insulation properties in combination with various adoptable fabrication techniques leading to mass and fuel cost reduction. The most limiting single factor for a wider use of fibre reinforced plastics (FRP) in particular as elements for structural application is believed to be their fire behaviour (Mouritz and Gibson, 2006). FRPs promote burning by themselves consuming the stabilizing polymeric matrix while embedded fibers (glass, carbon) persisting the flame (Mouritz et ah, 2006). Already at elevated temperatures (100 - 200 °C) the matrix softens with a loss in mechanical properties (Perret et al., 2011, Mouritz and Gibson, 2006). For this reason the stability of the structural component is decreased severely. Fire behavior becomes the major hazard to worry about, increasingly demanding targetoriented investigation, suitable testing and tailored development. Experimental approaches in the bench-scale have been proposed to investigate the structural integrity in the past (La Delfa et al., 2009, Gibson et al., 2010, Seggewiß, 2011, Mouritz and Gardiner, 2002, Schartel et al.). Ascribed to the small-scale neither the mechanical properties nor the effects of fire may be represented satisfactorily. Flence, the task is to perform more realistic investigations under adequate compressive loads in fully developed fires, based on suitable specimen sizes. Also (La Delfa et al., 2009)) have announced that it is evident that larger scale test of composites are needed. The aim of this study is to present a developed intermediate-scale test setup to perform more realistic investigations (Hörold et al.). Mechanical loading is generated by a column furnace in terms of compression due to a more severe response of specimens in fire tests (Seggewiß, 2011, Gibson et al., 2012, Feih et al., 2008, Feih et al., 2007). An oil burner used to determine the burnthrough resistance of thermal/acoustic insulation materials provides fire directly onto one side of the specimen (Federal Aviation Administration, 2003). Generating a fully developed fire the NexGen burner offers a homogenous heat flux of ~ 180 kW/m2. The intermediate-scale is addressed by specimen sizes either 500 x 500 mm or 1000 x 500 mm with a maximum thickness of 50 mm. The specimen attachment is realized by a compression device that was designed to apply the compressive loads, figure 1. The test setup for specimens with component like dimensions allows realistic investigations up to structural failure in absence and presence of fire load. A first test series was carried out with different levels of loading while the fire remained unchanged. Failure mechanisms, temperature distributions, diversity of FRPs regarding fiber, matrix, lay-up and core as well as flame retardant Systems are in the scope of investigation. T2 - Fire and materials 2013 - 13th International conference and exhibition CY - San Francisco, CA, USA DA - 28.01.2013 PY - 2013 SP - 221 EP - 226 PB - Interscience Communications CY - London, UK AN - OPUS4-27782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -