TY - JOUR A1 - Schlegel, M.C. A1 - Stroh, Julia A1 - Malaga, K. A1 - Meng, Birgit A1 - Panne, Ulrich A1 - Emmerling, Franziska T1 - Pathway of a damaging mechanism - Analyzing chloride attack by synchrotron based X-ray diffraction JF - Solid state sciences N2 - Typically, the changes of the phase compositions due to the chemical attack are studied in-situ only by chemical analysis or microscopy. In this study, the chloride transport and binding in the cement matrix in different cementitious materials was analyzed by synchrotron based X-ray diffraction (SyXRD) and energy dispersive X-ray spectroscopy (EDX). Sample materials consisting of cement paste were embedded in high concentrated sodium chloride solution over different time spans. Afterwards, the phase and chemical compositions were determined. The high spatial resolution and the information about the chloride distribution offer a detailed view of chloride binding in the cement matrix and allow the conclusions about the degradation mechanisms. The results are discussed related to the influence of different supplementary cementitious materials on the damaging mechanism. KW - Portland cement KW - In-situ KW - X-Ray diffraction KW - EDX KW - Durability KW - Chloride attack PY - 2015 DO - https://doi.org/10.1016/j.solidstatesciences.2015.03.021 SN - 1293-2558 SN - 1873-3085 VL - 44 SP - 45 EP - 54 PB - Elsevier Masson SAS CY - Amsterdam AN - OPUS4-33171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlegel, Moritz-Caspar A1 - McAlister, Catriona A1 - Rama, Mathieu T1 - Pioneering durability in electronics - The role of standardisation in policymaking and vice versa T2 - Electronics Goes Green 2024+ - Proceedings N2 - This paper highlights the role of standardisation in enabling greener electronics in the EU. It presents an analysis of the evolving landscape of material efficiency standardization, the majority of which has been undertaken in the framework of the European Ecodesign Directive, soon to be repealed by the Ecodesign for Sustainable Products Regulation. The impending policy shift will include a very broad extension of product scope, a strengthening of the way in which material efficiency aspects are addressed, and wider potential for product labelling. During the stakeholder consultation process, the European Commission announced that the durability of products would be one of the major topics in the new regulatory approach - hence the specific focus of this paper on durability scoring. The paper first examines the policy and standardization context, and then provides an overview of material efficiency indexes and scoring systems currently in place or being developed. It highlights where standardization is following policymaking, and where standardization is paving the way for more circular products. Scoring systems and indexes could potentially be used for both (i) setting minimum requirements for products entering the EU market, and (ii) consumer labels on material efficiency aspects such as product durability that could trigger environmentally sustainable purchase decisions. Subsequently, a methodological framework for a comprehensive durability scoring system that could be developed in standards is proposed, and the potential for these to be used as a basis for product legislation is explored. Potential durability criteria are listed, divided into technical, servicerelated and further aspects. Technical aspects include external factors that influence the durability of products such as drop/shock resistance. Service-related aspects include, for example, pre-purchase information provision on battery replaceability or availability of software updates. Other aspects include for example pro. T2 - EGG+ Electronics Goes Green 2024+ CY - Berlin, Germany DA - 18.06.2024 KW - Circular Economy KW - Durability KW - Material efficiency KW - Ecodesign KW - ESPR KW - Labelling KW - Consumer PY - 2024 SN - ISBN 978-3-00-079329-5 SP - 56 EP - 62 AN - OPUS4-60399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -