TY - JOUR A1 - Weber, A. A1 - von Randow, M. A1 - Voigt, A.-L. A1 - von der Au, Marcus A1 - Fischer, E. A1 - Meermann, Björn A1 - Wagner, M. T1 - Ingestion and toxicity of microplastics in the freshwater gastropodLymnaea stagnalis: No microplastic-induced effects alone or incombination with copper N2 - The interaction of microplastics with freshwater biota and their interaction with other stressors is still not very well understood. Therefore, we investigated the ingestion, excretion and toxicity of microplastics in the freshwater gastropod Lymnaea stagnalis. MP ingestion was analyzed as tissues levels in L. stagnalis after 6–96 h of exposure to 5–90 μm spherical polystyrene (PS) microplastics. To understand the excretion, tissue levels were determined after 24 h of exposure followed by a 12 h–7 d depuration period. To assess the toxicity, snails were exposed for 28 d to irregular PS microplastics (<63 μm, 6.4–100,000 particles mL−1), both alone and in combination with copper as additional stressor. To compare the toxicity of natural and synthetic particles, we also included diatomite particles. Microplastics ingestion and excretion significantly depended on the particle size and the exposure/depuration duration. An exposure to irregular PS had no effect on survival, reproduction, energy reserves and oxidative stress. However, we observed slight effects on immune cell phagocytosis. Exposure to microplastics did not exacerbate the reproductive toxicity of copper. In addition, there was no pronounced difference between the effects of microplastics and diatomite. The tolerance towards microplastics may originate from an adaptation of L. stagnalis to particle-rich environments or a general stress resilience. In conclusion, despite high uptake rates, PS fragments do not appear to be a relevant stressor for stress tolerant freshwater gastropods considering current environmental levels of microplastics. KW - Lymnaea stagnalis KW - Microplastic-induced effects KW - Mixture toxicity PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513551 DO - https://doi.org/10.1016/j.chemosphere.2020.128040 VL - 263 SP - 128040 PB - Elsevier Ltd. AN - OPUS4-51355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghazanfari, M. R. A1 - Vittadello, L. A1 - Al-Sabbagh, Dominik A1 - Santhosh, A. A1 - Frankcom, C. A1 - Fuß, F. A1 - von Randow, C. A. A1 - Siemensmeyer, K. A1 - Vrijmoed, J. C. A1 - Emmerling, Franziska A1 - Jerabek, P. A1 - Irmlau, M. A1 - Thiele, G. T1 - Remarkable Infrared Nonlinear Optical, Dielectric, and Strong Diamagnetic Characteristics of Semiconducting K3[BiS3] N2 - The ternary sulfido bismuthate K3[BiS3] is synthesized in quantitative yields. The material exhibits nonlinear optical properties with strong second harmonic generation properties at arbitrary wavelengths in the infrared spectral range and a notable laser-induced damage threshold of 5.22 GW cm−2 for pulsed laser radiation at a wavelength of 1040 nm, a pulse duration of 180 fs, and a repetition rate of 12.5 kHz. K3[BiS3] indicates semiconductivity with a direct optical band gap of 2.51 eV. Dielectric and impedance characterizations demonstrate κ values in the range of 6−13 at 1 kHz and a high electrical resistivity. A strong diamagnetic behavior with a susceptibility of −2.73 × 10−4 m3 kg−1 at room temperature is observed. These results suggest it is a promising nonlinear optical candidate for the infrared region. The synergic physical characteristics of K3[BiS3] provide insight into the correlation of optical, electrical, and magnetic properties. KW - Electrical properties KW - Insulators KW - Materials KW - Nonlinear optics KW - Quantum mechanics PY - 2022 DO - https://doi.org/10.1021/acs.jpclett.2c01689 VL - 13 IS - 30 SP - 6987 EP - 6993 PB - ACS Publications AN - OPUS4-55456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -