TY - JOUR A1 - Krasnorutskyi, S. A1 - Keil, D. A1 - Schmigalla, S. A1 - Zinke, M. A1 - Heyn, Andreas A1 - Pries, H. T1 - Metallurgical investigations on electron beam welded duplex stainless steels JF - Welding in the world N2 - Thick-walled components made of duplex stainless steels are used in the semi-finished products as well as in machinery, apparatus and plant construction. Electron beam welding (EBW) of these components may be recommended for economic and quality reasons. To guarantee the necessary mechanical and technological properties and the corrosion resistance, the duplex stainless steels are welded with filler material and afterwards undergo a post-weld heat treatment. The present work shows interim results of investigations concerning the development of an electron beam multi-process technology for welding these steels without filler material and post-weld heat treatment. The studies were performed on standard duplex stainless steel of type 1.4462 (X2CrNiMoN22-5-3). When welding duplex stainless steels, the cooling rate and the chemical composition have a crucial influence on the final result. Based on fundamental investigations relating to the influence of the process parameters on the effusion of nitrogen and the cooling rates, the resulting austenite formation, mechanical properties and the corrosion resistance were taken into account to develop appropriate electron beam multi-process techniques. The ferrite content was measured metallographically and by magnetic induction, the impact toughness was measured at –40 °C and the determination of critical pitting temperatures was performed using electrochemical noise measurements. KW - Nichtrostender Stahl KW - Duplex KW - Schweißen KW - Lochkorrosion KW - Mikrostruktur KW - Stickstoff KW - Ferrit KW - Schweißwerkstoff KW - Duplex stainless steels KW - EB-welding KW - Pitting corrosion KW - Microstructure KW - Fracture toughness KW - Nitrogen KW - Ferrite KW - Weld metal KW - Welding without filler PY - 2012 DO - https://doi.org/10.1007/BF03321393 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 11/12 SP - 34 EP - 40 PB - Springer CY - Oxford AN - OPUS4-28005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Salmi, S. A1 - Rhode, Michael A1 - Jüttner, S. A1 - Zinke, M. T1 - Hydrogen determination in 22MnB5 steel grade by use of carrier gas hot extraction technique JF - Welding in the world N2 - Carrier gas hot extraction (CGHE) technique was used for measurement of hydrogen in press-hardened (and as delivered) condition of 22MnB5 steel primarily coated with a thin layer of Al–Si. The CGHE technique was applied using different temperature programs: isothermal heating, temperature step, and linear heating in solid state. The effusing hydrogen was measured using thermal conductivity device (TCD) and high resolution mass spectroscopy (MS). Single isothermal heating at 400 and 900 °C allowed determining absolute value of effusing hydrogen. The linear heating, also known as thermal desorption analysis (TDA), revealed temperature dependent hydrogen effusion peaks. The deconvolution of the TDA spectra by peak fitting allowed the calculation of hydrogen desorption energies for each peak. The results showed good agreement between hydrogen concentrations measured with MS and TCD. In addition, the as-received ferrite-perlite microstructure showed only hydrogen effusion above 400 °C. The subsequent press hardening process leads to hydrogen uptake in the microstructure. In general, the press-hardened 22MnB5 revealed a hydrogen concentration of 0.4 to 0.5 ppm. The biggest concentration was released at isothermal holding at 400 °C indicating reversibly trapped hydrogen. TDA results with different heating rates confirmed mostly diffusible and reversible trapped hydrogen due to calculated activation energies in the range from 4 to 20 kJ mol-1; it was ascertained that nearly 90 % of the hydrogen left the specimens below 400 °C. Melt extraction (ME) was performed to measure the total hydrogen amount (including the diffusible and trapped hydrogen) and showed that above 900 °C up to 1 ppm hydrogen is trapped. KW - High strength steels KW - Hydrogen KW - Measurement KW - Spectroscopy KW - Outgassing KW - Martensite PY - 2015 UR - http://link.springer.com/article/10.1007/s40194-014-0186-z/fulltext.html DO - https://doi.org/10.1007/s40194-014-0186-z SN - 0043-2288 SN - 1878-6669 VL - 59 IS - 1 SP - 137 EP - 144 PB - Springer CY - Oxford AN - OPUS4-31445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Kannengießer, Thomas A1 - Burger, S. A1 - Zinke, M. A1 - Jüttner, S. T1 - Einfluss der Wärmeführung auf die Wasserstoffkonzentration in geschweißten höherfesten Feinkornbaustählen beim Einsatz modifizierter Sprühlichtbogenprozesse JF - Schweißen und Schneiden N2 - Um den wachsenden Anforderungen an den stofflichen und konstruktiven Leichtbau sowie den Forderungen nach Ressourceneffizienz Rechnung zu tragen, werden in vielen Industriebranchen zunehmend höherfeste Feinkornbaustähle mit Streckgrenzen über 690 MPa eingesetzt. Allerdings werden mit zunehmender Festigkeit deutlich höhere Anforderungen an deren schweißtechnische Verarbeitung gestellt, da die Sensibilität gegenüber einer Herabsetzung der mechanischen Eigenschaften durch den beim Schweißen aufgenommenen diffusiblen Wasserstoff mit steigender Festigkeit zunehmen kann. In den vergleichenden Untersuchungen von konventionellem Übergangslichtbogen und modifiziertem Sprühlichtbogen bei reduziertem Nahtöffnungswinkel konnte gezeigt werden, dass die Schweißprozessparameter die in das Schweißgut eingebrachte Wasserstoffkonzentration beeinflussen. Grundsätzlich ist den erarbeiteten Ergebnissen zu entnehmen, dass im Schweißgut von Stumpfstoßverbindungen mit reduziertem Nahtöffnungswinkel erhöhte mittlere Wasserstoffkonzentrationen vorliegen. Diese können mit geeigneten Wärmeführungen signifikant reduziert werden. Dabei erwies sich eine Nachwärmprozedur aus der Schweißwärme heraus als zielführend. KW - Hochfester Stahl KW - Schutzgasschweißen KW - Wärmeführung KW - Wasserstoff KW - Rissbildung PY - 2018 VL - 70 IS - 5 SP - 290 EP - 297 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-45109 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schaupp, Thomas A1 - Kannengießer, Thomas A1 - Burger, S. A1 - Zinke, M. A1 - Jüttner, S. T1 - Ermittlung geeigneter Wärmeführungen zur Vermeidung wasserstoffunterstützter Kaltrisse beim Schweißen höherfester Feinkornbaustähle mit modifiziertem Sprühlichtbogen N2 - Um den wachsenden Anforderungen an den stofflichen und konstruktiven Leichtbau sowie den Forderungen nach Ressourceneffizienz Rechnung zu tragen, werden in vielen Industriebranchen zunehmend höherfeste Feinkornbaustähle mit Streckgrenzen ≥ 690 MPa eingesetzt. Allerdings werden mit zunehmender Festigkeit deutlich höhere Anforderungen an deren schweißtechnische Verarbeitung gestellt. Weil gerade die Sensibilität gegenüber einer Degradation der mechanischen Eigenschaften der höherfesten Feinkornbaustähle durch den beim Schweißen aufgenommenen Wasserstoff mit steigender Festigkeit zunimmt, ist auf eine geeignete Wärmeführung zu achten. Für konventionelle MAG-Schweißprozesse liegen bereits Erfahrungen und Regelwerke zur Wärmeführung und entsprechende Wasserstoffgrenzwerte vor. Moderne Invertertechnik ermöglichte die Entwicklung modifizierter Sprühlichtbögen (mod. SLB). Im Vergleich zu konventionellen Lichtbogenprozessen wird ein äußerst kurzer und richtungsstabiler Lichtbogen, eine höhere Abschmelzleistung, ein größerer Kontaktrohrabstand und ein tieferer Einbrand realisiert. Neben den bekannten Vorteilen lassen außerdem reduzierte mögliche Nahtöffnungswinkel einen anderen Lagenaufbau und unterschiedliche Geometrien der einzelnen Schweißraupen erwarten. Jedoch fehlen hierzu Aussagen über den schweißverfahrensspezifisch eingetragenen Wasserstoff und die damit einhergehende Kaltrissgefahr. Hierzu lagen in der Industrie, besonders bei den KMU, kaum Kenntnisse vor und sollten deshalb als Ziel dieses Forschungsprojektes erarbeitet werden. Die vergleichenden Untersuchungen mit konventionellem Übergangslichtbogen und mod. SLB mit angepasster Nahtkonfiguration erfolgten an freischrumpfenden Stumpfstoßverbindungen sowohl mit Massivdraht als auch Metallpulverfülldraht. Zur Durchführung der Untersuchungen wurde eine Methodik entwickelt, die es ermöglicht, im Schweißgut realer Verbindungsschweißungen die Wasserstoffkonzentration reproduzierbar zu bestimmen. Anhand der Analysen konnte gezeigt werden, dass die Schweißprozessparameter die in das Schweißgut eingebrachte Wasserstoffkonzentration in Einlagenschweißungen beeinflussen. Auch beim Mehrlagenschweißen gestaltet sich der Wasserstoffeintrag abhängig von den Schweißprozessparametern und ist auf den unterschiedlichen Lagenaufbau zurückzuführen. Grundsätzlich ist den erarbeiteten Ergebnissen zu entnehmen, dass im Schweißgut von Stumpfstoßverbindungen mit abgesenktem Nahtöffnungswinkel erhöhte mittlere Wasserstoffkonzentrationen existieren. Außerdem beinhalten Schweißgüter aus Metallpulverfülldraht höhere Wasserstoffmengen als Massivdrahtschweißungen. Geeignete Wärmeführungen führten zu einer signifikanten Reduzierung der Wasserstoffkonzentration bei dem Einsatz der Nahtkonfiguration mit abgesenktem Nahtöffnungswinkel. Dabei erwies sich eine Nachwärmprozedur aus der Schweißwärme heraus als zielführend. Die Vorstellung von Zwischenergebnissen in Normungsgremien erfolgten, um mittelfristig vor allem den KMU eine sichere Verarbeitung höherfester Feinkornbaustähle zu ermöglichen. Die dargestellten Ergebnisse stellen einen wichtigen Beitrag zur sicheren Auslegung von Schweißkonstruktionen aus höherfestem Feinkornbaustahl dar und ermöglichen den KMU die technischen und wirtschaftlichen Vorteile der mod. SLB-Prozesse auszunutzen sowie unter Berücksichtigung der wasserstoffunterstützten Kaltrissbildung kostenintensive Nacharbeiten zu reduzieren. KW - Wasserstoff KW - MAG-Schweißen KW - Höherfester Feinkornbaustahl KW - Schweißprozessparameter KW - Wärmeführung KW - Kaltrissprüfung PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-425946 SP - 1 EP - 94 AN - OPUS4-42594 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -