TY - CONF A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - King, R. A1 - Engell, S. A1 - Paul, Andrea A1 - Pereira Remelhe, M. A1 - Maiwald, Michael T1 - Flexible Automation with compact NMR instruments N2 - Modular plants using intensified continuous processes represent an appealing concept to produce pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes, and it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and includes a compact Nuclear Magnetic Resonance (NMR) spectrometer for online quality monitoring as well as a new model-based control approach. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including ro-bust evaluation of sensor data. Here, we present alternatives for the quantitative determination of the analytes using modular, physically motivated models. These models can be adapted to new substances solely by the use of their corresponding pure component spectra, which can either be derived from experimental spectra as well as from quantum mechanical models or NMR predictors. Modular means that spec-tral models can simply be exchanged together with alternate reagents and products. Beyond that, we comprehensively calibrated an NIR spectrometer based on online NMR process data for the first time within an industrial plant. The integrated solution was developed for a metal organic reac-tion running on a commercial-scale modular pilot plant and it was tested under industrial conditions. T2 - 7th Annual PANIC Conference CY - Hilton Head Island, South Carolina, USA DA - 03.03.2019 KW - Online NMR Spectroscopy PY - 2019 AN - OPUS4-47715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - Engell, S. A1 - Paul, Andrea A1 - Pereira Remelhe, M. A1 - Maiwald, Michael T1 - Flexible automation with compact NMR spectroscopy for continuous production of pharmaceuticals N2 - Modular plants using intensified continuous processes represent an appealing concept for the production of pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes; besides, it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and is based on a compact nuclear magnetic resonance (NMR) spectrometer. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including robust evaluation of sensor data. Beyond monitoring the product quality, online NMR data was used in a new iterative optimization approach to maximize the plant profit and served as a reliable reference for the calibration of a near-infrared (NIR) spectrometer. The overall approach was demonstrated on a commercial-scale pilot plant using a metal-organic reaction with pharmaceutical relevance. KW - NMR Spectroscopy KW - NIR Spectroscopy KW - Real-time process monitoring KW - Real-time quality control KW - Continuous processes KW - CONSENS KW - Data Fusion PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-480623 SN - 1618-2642 SN - 1618-2650 VL - 411 IS - 14 SP - 3037 EP - 3046 PB - Springer Nature CY - Heidelberg AN - OPUS4-48062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, M. A1 - Lodi, A. A1 - Charoud-Got, J. A1 - Rienitz, O. A1 - Röthke, A. A1 - Richter, Silke T1 - Pharmacopoeial Reference Standards for Elemental Impurities N2 - Elemental impurities (EI) in medicinal products for human use are limited according to ICH guideline Q3D, which is in force since December 2017 in Europe and US. As a consequenceconsequence, the relevant texts of the European Pharmacopoeia (Ph. Eur.) and the United States Pharmacopeia (USP) have been modified to reflect and complement ICH Q3D, providing details on the analytical methods to be used. In those chapters (Ph. Eur. 2.4.20., USP <233>), it is stated that for the quantification of elemental impurities, certified reference materials (CRM) from a national metrology institute (NMI) or reference materials that are traceable to the CRM of an NMI should be used. The Ph. Eur. has so far implemented elemental impurity standards of this type for the four most important elemental impurities i.e. those corresponding to ICH Q3D Class 1: lead, cadmium, mercury and arsenic. The poster provides details on the development of those four reference standards, which was undertaken in partnership with a major institute accredited CRM producer (JRC, European Commission), and a national metrology institute (BAM and PTB, Germany), and a Designated Institute and accredited CRM producer (BAM, Germany). The reference standards were established and characterised according to rigorous metrological principles and are supplied with extended supporting information as required for the intended use. After successful completion of the project, the four reference standards have been added to the Ph.Eur. catalogue and are in distribution. It is expected that another three elemental impurity standards will be implemented and made available to users within the next three years. T2 - Joint EDQM-USP 13th International Symposium on Pharmaceutical Reference Standards CY - Strasbourg, France DA - 13.03.2019 KW - ICH guideline Q3D KW - Elemental Impurities KW - Pharmacopoeial Reference Standards PY - 2019 AN - OPUS4-47845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -