TY - CONF A1 - Wittig, Günther A1 - Beller, M. A1 - Leider, A. A1 - Stumm, W. A1 - Weber, H. P. T1 - Application of Reference Standards for Control of Eddy-Current Test Equipment T2 - Eddy-current characterization of materials and structures: a symposium sponsored by ASTM Committee E-7 on Nondestructive Testing T2 - Symposium on Eddy-Current Characterization of Materials and Structures CY - Gaithersburg, MD, USA DA - 1979-09-05 PY - 1981 N1 - Serientitel: ASTM special technical publication – Series title: ASTM special technical publication IS - 722 SP - 79 EP - 85 PB - ASTM CY - Philadelphia, PA, USA AN - OPUS4-33329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, K.-E. A1 - Weber, P.-M. A1 - Geipel, H. A1 - Hübner, Heinz W. A1 - Weymann, J. T1 - Transport Analyses for Determination of Man-Rem Dose Rates with Regard to Different Modes of Transport, Routing and Packaging T2 - Packaging and transportation of radioactive materials T2 - 7th International symposium Packaging and Transportation of Radioactive Materials CY - New Orleans, La., USA DA - 15.05.1983 PY - 1983 VL - 1 SP - 343 EP - 349 AN - OPUS4-36401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Senoner, Mathias A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Escher, M. A1 - Weber, N. A1 - Funnenmann, D. A1 - Krömker, B. T1 - Testing of Lateral Resolution in the Nanometre Range Using the BAM-L002 - Certified Reference Material: Application to ToF-SIMS IV and NanoESCA Instruments JF - Journal of surface analysis T2 - International Symposium on Practical Surface Analysis CY - Jeju, Republic of Corea DA - 2004-10-04 KW - ESCA KW - Nanometrologie KW - Nanotechnologie KW - Oberflächenanalytik KW - SIMS KW - XPS KW - Zertifiziertes Referenzmaterial PY - 2005 SN - 1341-1756 SN - 1347-8400 VL - 12 IS - 2 SP - 78 EP - 82 CY - Tsukuba AN - OPUS4-11146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, M. A1 - Becker, Roland A1 - Köppen, Robert A1 - Durmaz, V. T1 - Classical hybrid Monte-Carlo simulations of the interconversion of hexabromocyclododecane JF - ZIB-Report N2 - In this paper, we investigate the interconversion processes of the major flame retardant - 1,2,5,6,9,10-hexabromocyclododecane (HBCD) - by the means of statistical thermodynamics based on classical force-fields. Three ideas will be presented. First, the application of classical hybrid Monte-Carlo simulations for quantum mechanical processes will be justified. Second, the problem of insufficient convergence properties of hybrid Monte-Carlo methods for the generation of low temperature canonical ensembles will be solved by an interpolation approach. Furthermore, it will be shown how free energy differences can be used for a rate matrix computation. The results of our numerical simulations will be compared to experimental results. KW - Markov process KW - Molecular dynamics KW - Rate matrix PY - 2007 SN - 1438-0064 VL - 07-31 SP - 1 EP - 18 PB - ZIB CY - Berlin AN - OPUS4-17841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppen, Robert A1 - Becker, Roland A1 - Weber, M. A1 - Durmaz, V. A1 - Nehls, Irene T1 - HBCD stereoisomers: Thermal interconversion and enantiospecific trace analysis in biota T2 - DIOXIN 2008, 28th International Symposium on Halogenated Persistent Organic Pollutants (POPs), August 17-22, 2008, Birmingham, UK (Proceedings) T2 - DIOXIN 2008, 28th International Symposium on Halogenated Persistent Organic Pollutants (POPs) CY - Birmingham, UK DA - 2008-08-17 KW - HBCD KW - Stereoisomerie KW - Persistent Organic Pollutant KW - HPLC-MS PY - 2008 UR - http://www.dioxin20xx.org/pdfs/2008/08-819.pdf IS - Paper #154 SP - 1 EP - 4 AN - OPUS4-17842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andrae, K. A1 - Merkel, Stefan A1 - Durmaz, V. A1 - Fackeldey, K. A1 - Köppen, Robert A1 - Weber, M. A1 - Koch, Matthias T1 - Investigation of the ergopeptide epimerization process JF - Computation N2 - Ergopeptides, like ergocornine and a-ergocryptine, exist in an S- and in an R-configuration. Kinetic experiments imply that certain configurations are preferred depending on the solvent. The experimental methods are explained in this article. Furthermore, computational methods are used to understand this configurational preference. Standard quantum chemical methods can predict the favored configurations by using minimum energy calculations on the potential energy landscape. However, the explicit role of the solvent is not revealed by this type of methods. In order to better understand its influence, classical mechanical molecular simulations are applied. It appears from our research that 'folding' the ergopeptide molecules into an intermediate state (between the S- and the R-configuration) is mechanically hindered for the preferred configurations. KW - Ergopeptide KW - Epimerization KW - Hybrid monte carlo KW - Molecular dynamics KW - Conformation KW - Quantum mechanics PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-324632 DO - https://doi.org/10.3390/computation2030102 SN - 2079-3197 VL - 2 IS - 3 SP - 102 EP - 111 PB - MDPI CY - Basel AN - OPUS4-32463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, C. A1 - Stockmann, Jörg M. A1 - Rosier, E. T1 - Corrosion of borosilicate glasses JF - Photonik N2 - In contact with aqueous media glass tends to corrode leading to different surface properties. For the precision application this alteration might cause product failure. Hence precise knowledge of the surface interactions is essential. We performed an extensive investigation on the behavior of borosilicate glass under corrosive attack in order to identify critical processes. We identified appropriate investigation methods including sequential chemical analysis, ATR-IR, ellipsometry and SNMS. These techniques allow to identify the influence of specific production processes. KW - Glass corrosion KW - Borosilicate glass KW - SNMS KW - Ellipsometry KW - ATR-IR PY - 2015 UR - http://www.photonik.de/korrosion-von-borosilikatglas/150/21005/317573 SN - 1432-9778 VL - 47 IS - 6 SP - 64 EP - 68 PB - AT-Fachverl. CY - Fellbach AN - OPUS4-35240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villatoro, J. A1 - Zühlke, M. A1 - Riebe, D. A1 - Beitz, T. A1 - Weber, M. A1 - Riedel, Jens A1 - Löhmannsröben, H.-G. T1 - IR-MALDI ion mobility spectrometry: physical source characterization and application as HPLC detector JF - International Journal for Ion Mobility Spectrometry N2 - Infraredmatrix-assisted laser dispersion and ionization(IR-MALDI) in combination with on mobility (IM) spectrometry enables the direct Analysis of biomolecules in aqueous solution. The release of ions directly from an aqueous solution is based on a phase explosion, induced by the Absorption of an IR laser pulse, which disperses the liquid as vapor, nano- and micro-droplets. The ionization process is characterized initially by a broad spatial distribution of the ions, which is a result of complex fluid dynamics and desolvation kinetics. These processes have a profound effect on the shape and width of the peaks in the IM spectra. In this work, the Transport of ions by the phase explosion-induced shockwave could be studied independently from the transport by the electric field. The shockwave-induced mean velocities of the ions at different time scales were determined through IM spectrometry and shadowgraphy. The results show a deceleration of the Ions from 118m∙s−1 at a distance of 400 μm from the liquid surface to 7.1 m∙s−1 at a distance of 10 mm, which is caused by a pileup effect. Furthermore, the desolvation kinetics were investigated and a first-order desolvation constant of 325 ± 50 s−1 was obtained. In the second part, the IR-MALDI-IM spectrometer is used as an HPLC detector for the twodimensional separation of a pesticide mixture. KW - Ion mobility spectrometry KW - IR-MALDI KW - Shadowgraphy KW - Laser PY - 2016 DO - https://doi.org/10.1007/s12127-016-0208-1 VL - 2016 IS - 4 SP - 197 EP - 207 PB - Springer-Verlag Berlin CY - Heidelberg AN - OPUS4-38467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, M. A1 - Lodi, A. A1 - Charoud-Got, J. A1 - Rienitz, O. A1 - Röthke, A. A1 - Richter, Silke T1 - European Pharmacopoeia reference standards to underpin the legal requirements in Europe for the control of elemental impurities in medicinal products for human use N2 - Guideline ICH Q3D on elemental impurities (EI) was adopted by the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) and published in December 2014. The European Medicines Agency (EMA) Committee for Medicinal Products for Human use (CHMP) adopted guideline Q3D in December 2014 and defined the dates for coming into effect . ICH Q3D is the first globally harmonised guidance to control 24 elemental impurities in drug products administered by oral, parenteral and inhalation routes. The policy entails a paradigm shift, moving away from substance-based testing towards risk-based assessment and control strategy. In the context of implementing Q3D in Europe, several texts and monographs of the European Pharmacopoeia (Ph. Eur.) were revised, rendering the guideline legally binding in 38 European countries. Ph. Eur. general chapter 5.20. has been modified to reflect ICH Q3D guideline and the old fashioned heavy metals test, Ph. Eur. 2.4.8., has been deleted from individual Ph. Eur. monographs for substances for human use. Furthermore, general chapter Ph. Eur. 2.4.20. Determination of metal catalyst and metal reagent residues has been completely revised and renamed Determination of elemental impurities. Whatever the chosen analytical method, reference materials with a known content of the target element are required for the quantification of elemental impurities. This led EDQM to consider the establishment of suitable reference materials. However, due to lack of specific experience and technical equipment, external partners were sought. Three key European institutes (JRC, BAM and PTB) were identified and involved in the project. To mitigate the overall risk at first the project focussed on the elements classified by ICH Q3D as Class 1: lead, cadmium, mercury and arsenic. A key necessity was the traceability of the element content to the SI (International System of Units Measurement) to allow metrologically reliable and reproducible determination. This required new and specific approaches to be developed by the partners in charge (BAM and PTB). Since January 2018 lead solution CRS, cadmium solution CRS, mercury solution CRS and arsenic solution CRS are available to the users of the Ph. Eur. . T2 - BERM-15 CY - Berlin, Germany DA - 23.09.2018 KW - Pharmacopea KW - Reference standards KW - Elemental impurities KW - Medicinal products PY - 2018 AN - OPUS4-46217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - Engell, S. A1 - Paul, Andrea A1 - King, R. A1 - Maiwald, Michael T1 - Raw data of pilot plant runs for CONSENS project (Case study 1) N2 - In case study one of the CONSENS project, two aromatic substances were coupled by a lithiation reaction, which is a prominent example in pharmaceutical industry. The two aromatic reactants (Aniline and o-FNB) were mixed with Lithium-base (LiHMDS) in a continuous modular plant to produce the desired product (Li-NDPA) and a salt (LiF). The salt precipitates which leads to the formation of particles. The feed streams were subject to variation to drive the plant to its optimum. The uploaded data comprises the results from four days during continuous plant operation time. Each day is denoted from day 1-4 and represents the dates 2017-09-26, 2017-09-28, 2017-10-10, 2017-10-17. In the following the contents of the files are explained. KW - Process Analytical Technology KW - Multivariate Data Analysis KW - Nuclear Magnetic Resonance KW - Near Infrared Spectroscopy KW - Continuous Manufacturing KW - CONSENS PY - 2018 DO - https://doi.org/10.5281/zenodo.1438233 PB - Zenodo CY - Geneva AN - OPUS4-48063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -