TY - JOUR A1 - von der Au, Marcus A1 - Schwinn, M. A1 - Kuhlmeier, K. A1 - Büchel, C. A1 - Meermann, Björn T1 - Development of an automated on-line purification HPLC single cell-ICP-MS approach for fast diatom analysis N2 - The most challenging part in performing a single cell ICP-MS (sc-ICP-MS) approach is the sample preparation, in particular the reduction of the ionic background. This step is, in many cases, time-consuming and required for each sample separately. Furthermore, sc-ICP-MS measurements are mostly carried out "manually", given the fact that present systems are not allowing for an automated change of samples. Thus, within this work, we developed an approach based on a HPLC system coupled on-line with sc-ICP-MS via a set of switching valves as well as an in-line filter for automated cell washing. This set-up enables the ionic background removal as well as analysis of single cells completely automated without any manual sample pretreatment. Our approach was applied for the analysis of the single celled diatom species Cyclotella meneghiniana, a marine diatom species, on the basis of Mg24 and facilitates testing in 11 min per sample, requiring only around 10,000 cells in a volume of 10 µL and approx. 10 mL of a 5% MeOH/95% deionized water (v/v) mixture. Even at extremely saline culturing media concentrations (up to 1000 mg L-1 magnesium) our on-line approach worked sufficiently allowing for distinction of ionic and particulate fractions. Furthermore, a set of diatom samples was analyzed completely automated without the need for changing samples manually. So, utilizing this approach enables analyzing a high quantity of samples in a short time and therefore in future the investigation of ecotoxicological effects is simplified for example in terms of metal accumulation by taking biovariability into account. KW - Single cell-ICP-MS KW - Diatoms KW - Ecotoxicology testing KW - Automated system PY - 2019 DO - https://doi.org/10.1016/j.aca.2019.05.045 SN - 1873-4324 VL - 1077 SP - 87 EP - 94 PB - Elsevier AN - OPUS4-48567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Retzmann, Anika A1 - Faßbender, Sebastian A1 - Rosner, M. A1 - von der Au, Marcus A1 - Vogl, Jochen T1 - Performance of second generation ICP-TOFMS for (multi-)isotope ratio analysis: a case study on B, Sr and Pb and their isotope fractionation behavior during the measurements N2 - The performance of second generation ICP-TOFMS, equipped with a micro-channel plate (MCP) enabling multi-isotope detection, in terms of isotope ratio precision and instrumental isotopic fractionation (IIF) for (multi-)isotope ratio analysis was thoroughly assessed for B, Sr and Pb. Experimental isotope ratio precision of 0.14 % for 11B/10B intensity ratio, 0.15 % for 87Sr/86Sr intensity ratio and 0.07% for 208Pb/206Pb intensity ratio were obtained at high signal levels ($500 mg L−1) which is comparable to first generation ICP-TOFMS. The long-term stability of isotope ratios, measured over several hours and expressed as repeatability, is between 0.05 % and 1.8 % for B, Sr and Pb. The observed IIF per mass unit is negative for B (i.e., −11 % for 11B/10B) which is in accordance with measurements using sector field (MC) ICP-MS. But the observed IIF per mass unit is positive for Sr (i.e., 2 % for 87Sr/86Sr) and Pb (i.e., 4.5 % for 208Pb/206Pb) which is not in accordance with measurements using sector field (MC) ICP-MS. Furthermore, different IIFs per mass unit were observed for different isotope pairs of the same isotopic system (i.e., Sr, Pb) and adjacent isotopic systems (i.e., Pb vs. Tl). This and the observations from three-isotope plots for Sr and Pb show that ion formation, ion extraction, ion transmission, ion separation and ion detection in second generation ICP-TOFMS is subject to IIF that does not follow the known mass dependent fractionation laws and is possibly caused by mass independent fractionation and/or multiple (contradictory) fractionation processes with varying contributions. The non-mass dependent IIF behavior observed for second generation ICP TOFMS has profound consequences for the IIF correction of isotope raw data, including application of multi-isotope dilution mass spectrometry (IDMS) using ICP-TOFMS. Hence, only IIF correction models that correct also for mass independent fractionation are applicable to calculate reliable isotope ratios using second generation ICP-TOFMS. In the present study, reliable d11B values, and absolute B, Sr and Pb isotope ratios could be determined using the SSB approach in single-element solutions as well as in a mixture of B, Sr and Pb, where the isotopes were measured simultaneously. KW - ICP-TOFMS KW - Isotope delta value KW - Isotope amount ratio KW - Conventional isotope ratio KW - Instrumental isotope fractionation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582239 DO - https://doi.org/10.1039/d3ja00084b SN - 0267-9477 VL - 38 IS - 10 SP - 2144 EP - 2158 PB - Royal Society of Chemistry AN - OPUS4-58223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -