TY - JOUR A1 - Heyde, M. A1 - Sturm, Heinz A1 - Geuss, Markus A1 - Ritter, C. A1 - Rademann, K. T1 - Rastersondenmikroskopie als Werkzeug der Lithographie für Nanostrukturen PY - 1999 SN - 0946-641X VL - 6 IS - 3 SP - 28 EP - 33 PB - Universität CY - Berlin AN - OPUS4-6861 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heyde, M. A1 - Sturm, Heinz A1 - Rademann, K. T1 - New application for the calibration of scanning probe microscopy piezos KW - Scanning probe microscope KW - Piezoelectric translator KW - Calibration KW - Height Calibration KW - Force-Microscopy PY - 1999 SN - 0142-2421 SN - 1096-9918 VL - 27 IS - 5-6 SP - 291 EP - 295 PB - Wiley CY - Chichester AN - OPUS4-6858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Bachelier, G. A1 - Wiggins, S. M. A1 - Siegel, J. A1 - Solis, J. A1 - Krüger, Jörg A1 - Sturm, Heinz T1 - Femtosecond laser ablation of indium phosphide in air: dynamical, structural and morphological evolution N2 - The irradiation of single-crystalline indium phosphide (c-InP) by Ti:sapphire femtosecond laser pulses (130 fs, 800 nm) in air is studied by means of in-situ time resolved reflectivity measurements [fs-time-resolved microscopy (100 fs-10 ns) and point probing analysis (ns - µs)] and by complementary ex-situ surface analytical methods (Micro Raman Spectroscopy, Scanning Force, and Optical Microscopy). The dynamics of melting, ablation, and optical breakdown as well as structural changes resulting from rapid solidification are investigated in detail. Different laser-induced surface morphologies are characterized and discussed on the basis of recent ablation and optical breakdown models. KW - Femtosecond laser ablation KW - Optical breakdown KW - Time-resolved measurements KW - Semiconductor KW - Indium phosphide PY - 2010 SN - 1454-4164 VL - 12 IS - 3 SP - 421 EP - 426 PB - INOE & INFM CY - Bucharest AN - OPUS4-21082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröter, Maria-Astrid A1 - Sturm, Heinz A1 - Holschneider, M. T1 - Phase and amplitude patterns in DySEM mappings of vibrating microstructures N2 - We use a dynamic scanning electron microscope (DySEM) to analyze the movement of oscillating micromechanical structures. A dynamic secondary electron (SE) signal is recorded and correlated to the oscillatory excitation of scanning force microscope (SFM) cantilever by means of lock-in amplifiers. We show, how the relative phase of the oscillations modulate the resulting real part and phase pictures of the DySEM mapping. This can be used to obtain information about the underlying oscillatory dynamics. We apply the theory to the case of a cantilever in oscillation, driven at different flexural and torsional resonance modes. This is an extension of a recent work (Schr¨oter et al 2012 Nanotechnology 23 435501), where we reported on a general methodology to distinguish nonlinear features caused by the Imaging process from those caused by cantilever motion. KW - DySEM KW - mechanical nonlinearity KW - vibration KW - DySEM KW - mechanische Nichtlinearitäten KW - Vibration PY - 2013 DO - https://doi.org/doi:10.1088/0957-4484/24/21/215701 VL - 24 IS - 21 SP - 215701-1 EP - 215701-10 PB - IOP PUBLISHING LTD CY - Bristol, UK AN - OPUS4-35396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heyde, M. A1 - Sturm, Heinz A1 - Rademann, K. T1 - SPM Techniques to characterise Electrical Properties of Nanometer sized Particles T2 - Raster-Sonden-Mikroskopien und organische Materialien VII CY - Berlin, Germany DA - 1998-10-07 PY - 1998 AN - OPUS4-6455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Arlt, C. A1 - Exner, W. A1 - Riedel, U. A1 - Sturm, Heinz A1 - Sinapius, M. ED - Wiedemann, M. ED - Sinapius, M. T1 - Nanoscaled boehmites' modes of action in a polymer and its carbon fiber reinforced plastic N2 - Laminates of carbon fiber reinforced plastic (CFRP), which are manufactured by injection technology, are reinforced with boehmite particles. This doping strengthens the laminates, whose original properties are weaker than those of prepregs. Besides the shear strength, compression strength and the damage tolerance, the mode of action of the nanoparticles in resin and in CFRP is also analyzed. It thereby reveals that the hydroxyl groups and even more a taurine modification of the boehmites' surface alter the elementary polymer morphology. Consequently a new flow and reaction comportment, lower glass transition temperatures and shrinkage, as well as a changed mechanical behavior occur. Due to a structural upgrading of the matrix (higher shear stiffness, reduced residual stress), a better fiber-matrix adhesion, and differing crack paths, the boehmite nanoparticles move the degradation barrier of the material to higher loadings, thus resulting in considerably upgraded new CFRP. KW - Nano particles KW - Epoxy KW - Aerospace PY - 2012 SN - 978-3-642-29189-0 IS - Chapter 4 SP - 49 EP - 58 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-26496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröter, Maria-Astrid A1 - Holschneider, M. A1 - Sturm, Heinz T1 - Analytical and numerical analysis of imaging mechanism of dynamic scanning electron microscopy N2 - The direct observation of small oscillating structures with the help of a scanning electron beam is a new approach to study the vibrational dynamics of cantilevers and microelectromechanical systems. In the scanning electron microscope, the conventional signal of secondary electrons (SE, dc part) is separated from the signal response of the SE detector, which is correlated to the respective excitation frequency for vibration by means of a lock-in amplifier. The dynamic response is separated either into images of amplitude and phase shift or into real and imaginary parts. Spatial resolution is limited to the diameter of the electron beam. The sensitivity limit to vibrational motion is estimated to be sub-nanometer for high integration times. Due to complex imaging mechanisms, a theoretical model was developed for the interpretation of the obtained measurements, relating cantilever shapes to interaction processes consisting of incident electron beam, electron–lever interaction, emitted electrons and detector response. Conclusions drawn from this new model are compared with numerical results based on the Euler–Bernoulli equation. KW - Electron microscopy KW - Scanning force microscopy KW - Cantilever motion KW - Modes KW - Harmonics KW - Mathematical model KW - Imaging theory PY - 2012 DO - https://doi.org/10.1088/0957-4484/23/43/435501 SN - 0957-4484 SN - 1361-6528 VL - 23 IS - 43 SP - 435501-1 - 435501-10 PB - IOP Publishing Ltd. CY - Bristol AN - OPUS4-27642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, J. A1 - Polte, M. A1 - Lorenz, D. A1 - Oberschmidt, D. A1 - Sturm, Heinz A1 - Uhlmann, E. T1 - Binderless-cBN as cutting material for ultra-precision machining of stainless steel N2 - The ultra–precision cutting of steel materials is possible but needs modifications of machine tools or the workpiece material. One approach of actual research is the development of cutting materials that gives the opportunity for direct cutting of surfaces with ultra–precision quality. Binderless–cBN is here one of the most promising materials. The paper shows results of experimental studies with binderless–cBN as cutting material while turning stainless steel. Various investigations were carried out to determine the wear mechanisms. Furthermore, measurements are shown regarding the surface quality. The achieved results show the high potential ofbinderless–cBN as cutting material for the machining of steel. KW - Cubic boron nitride KW - Stainless steel KW - Ultra-precision PY - 2014 DO - https://doi.org/10.4028/www.scientific.net/AMR.1018.107 SN - 1022-6680 SN - 1662-8985 VL - 1018 SP - 107 EP - 114 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-32377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Heinz A1 - Heyde, M. A1 - Rademann, K. T1 - Measuring SPM Piezo Displacement Responses PY - 1999 SN - 1551-9295 VL - 99 IS - 4 SP - 24 EP - 26 PB - Microscopy Society of America CY - Wappingers Falls, NY AN - OPUS4-6860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hartmann, S. A1 - Shaporin, A. A1 - Hermann, S. A1 - Bonitz, J. A1 - Heggen, M. A1 - Meszmer, P. A1 - Sturm, Heinz A1 - Hölck, O. A1 - Blaudeck, T. A1 - Schulz, S. E. A1 - Mehner, J. A1 - Gessner, T. A1 - Wunderle, B. T1 - Towards nanoreliability of CNT-based sensor applications: Investigations of CNT-metal interfaces combining molecular dynamics simulations, advanced in situ experiments and analytics N2 - In this paper we present results of our recent efforts to understand the mechanical interface behaviour of single-walled carbon nanotubes (CNTs) embedded in metal matrices. We conducted experimental pull-out tests of CNTs embedded in Pd or Au and found Maximum forces in the range 10 - 102 nN. These values are in good agreement with forces obtained from molecular Dynamics simulations taking into account surface functional Groups (SFGs) covalently linked to the CNT material. The dominant failure mode in experiment is a CNT rupture, which can be explained with the presence of SFGs. To qualify the existence of SFGs on our used CNT material, we pursue investigations by means of fluorescence labeling of surface species in combination with Raman imaging. We also report of a tensile test system to perform pull-out tests inside a transmission electron microscope to obtain in situ images of CNT-metal interfaces under mechanical loads at the atomic scale. T2 - 2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems CY - Budapest, Hungary DA - 20.4.2015 KW - Carbon nanotube CNT KW - Metal matrix KW - Pull-out test KW - Molecular dynamics simulation KW - Surface functional groups KW - Fluorescence labeling KW - Raman imaging KW - Tensile test inside a TEM PY - 2015 SN - 978-1-4799-9950-7 VL - 2015 SP - 1 EP - 8 PB - IEEE AN - OPUS4-37625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Priebe, Nsesheye Susan A1 - Vogler, Nico A1 - Sturm, Patrick A1 - Neubert, M. A1 - Schröder, H.-J. A1 - Kühne, Hans-Carsten A1 - Hünger, K.-J. A1 - Gluth, Gregor T1 - Calcined brick clays and mixed clays as supplementary cementitious materials: Effects on the performance of blended cement mortars N2 - While calcined clays in general have been credited with a great potential to mitigate CO2 emissions related to cement production and consumption, calcined brick clays are currently understudied in this regard. In the present work, two brick clays, a low-grade kaolinitic clay, and a mixed clay composed of 50% brick clay and 50% low-grade kaolinitic clay were studied regarding transformations on calcination, and strength and durability performance as well as pore structure of mortars made with the blended cements. All calcined clays exhibited pozzolanic reactivity, with the performance of the brick clays inferior to the low-grade kaolinitic clay. However, the mixed clay performed very similar to the low-grade kaolinitic clay, which points to a viable option for optimal use of brick clays in cementitious systems. The carbonation resistance of the blended cement mortars was generally worse than that of the plain Portland cement mortar, as expected, but the former exhibited a significantly improved chloride penetration resistance. The latter improvement was due to pore structure refinement in the blended cement mortars, compared to the Portland cement mortar. KW - Brick clay KW - Illitic clay KW - Calcined clay KW - Blended cement KW - Supplementary cementitous materials PY - 2021 DO - https://doi.org/10.1016/j.conbuildmat.2020.120990 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 266 SP - 120990 PB - Elsevier Ltd. AN - OPUS4-51362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neuschaefer-Rube, U. A1 - Illemann, J. A1 - Sturm, M. A1 - Bircher, B. A1 - Meli, F. A1 - Bellon, Carsten A1 - Evsevleev, Sergei T1 - Validation of a fast and traceable radiographic scale calibration of dimensional computed tomography N2 - A fast and highly precise method of determining the geometrical scale factor of computed tomography (CT) measurements has been validated successfully by Bundesanstalt für Materialforschung und -prüfung (BAM), the Federal Institute of Metrology (METAS) and Physikalisch-Technische Bundesanstalt (PTB) within the scope of AdvanCT (Advanced Computed Tomography for dimensional and surface measurements in industry), a project funded in the European Metrology Programme for Innovation and Research (EMPIR). The method has been developed by PTB and requires only two radiographic images of a calibrated thin 2D standard (hole grid standard) from two opposite directions. The mean grid distance is determined from both radiographs. From this and with the help of the calibration result, the radiographic scale and therefore the voxel size is determined. The procedure takes only a few minutes and avoids a time-consuming CT scan. To validate the method, the voxel sizes determined via this method were compared with voxel sizes determined from CT scans of calibrated objects. Relative deviations between the voxel sizes in the range of 10−5 were achieved with minimal effort using cone-beam CT systems at moderate magnifications. KW - Dimensional metrology KW - Voxel size KW - Industrial CT KW - Geometrical magnification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553271 DO - https://doi.org/10.1088/1361-6501/ac74a3 SN - 0957-0233 VL - 33 IS - 9 SP - 1 EP - 9 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-55327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bovtun, V. A1 - Sturm, Heinz A1 - Pashkov, V.M. ED - Baptista, J. T1 - Investigation of local electrical properties and topography of homo- and heterogeneous TiO2-containing ceramics by scanning force microscopy (SFM) T2 - 5th International Conference on Electronic Ceramics & Applications CY - Aveiro, Portugal DA - 1996-09-02 KW - Ceramics KW - Scanning force microscopy KW - SFM KW - Electrical properties KW - Heterogeneity PY - 1996 SN - 972-828317-2 VL - 2 SP - 117 EP - 120 PB - Fundação João Jacinto de Magalhães CY - Aveiro AN - OPUS4-6850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -