TY - CONF A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - King, R. A1 - Engell, S. A1 - Paul, Andrea A1 - Pereira Remelhe, M. A1 - Maiwald, Michael T1 - Flexible Automation with compact NMR instruments N2 - Modular plants using intensified continuous processes represent an appealing concept to produce pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes, and it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and includes a compact Nuclear Magnetic Resonance (NMR) spectrometer for online quality monitoring as well as a new model-based control approach. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including ro-bust evaluation of sensor data. Here, we present alternatives for the quantitative determination of the analytes using modular, physically motivated models. These models can be adapted to new substances solely by the use of their corresponding pure component spectra, which can either be derived from experimental spectra as well as from quantum mechanical models or NMR predictors. Modular means that spec-tral models can simply be exchanged together with alternate reagents and products. Beyond that, we comprehensively calibrated an NIR spectrometer based on online NMR process data for the first time within an industrial plant. The integrated solution was developed for a metal organic reac-tion running on a commercial-scale modular pilot plant and it was tested under industrial conditions. T2 - 7th Annual PANIC Conference CY - Hilton Head Island, South Carolina, USA DA - 03.03.2019 KW - Online NMR Spectroscopy PY - 2019 AN - OPUS4-47715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottu Mukkula, A. R. A1 - Kern, Simon A1 - Salge, M. A1 - Holtkamp, M. A1 - Guhl, Svetlana A1 - Fleischer, C. A1 - Meyer, Klas A1 - Remelhe, M. A1 - Maiwald, Michael A1 - Engell, S. T1 - An Application of Modifier Adaptation with Quadratic Approximation on a Pilot Scale Plant in Industrial Environment N2 - The goal of this work is to identify the optimal operating input for a lithiation reaction that is performed in a highly innovative pilot scale continuous flow chemical plant in an industrial environment, taking into account the process and safety constraints. The main challenge is to identify the optimum operation in the absence of information about the reaction mechanism and the reaction kinetics. We employ an iterative real-time optimization scheme called modifier adaptation with quadratic approximation (MAWQA) to identify the plant optimum in the presence of plant-model mismatch and measurement noise. A novel NMR PAT-sensor is used to measure the concentration of the reactants and of the product at the reactor outlet. The experiment results demonstrate the capabilities of the iterative optimization using the MAWQA algorithm in driving a complex real plant to an economically optimal operating point in the presence of plant-model mismatch and of process and measurement uncertainties. KW - Process Analytical Technology KW - Online NMR Spectroscopy KW - Process Industry KW - Iterative real-time optimization KW - Modifier adaptation KW - Plant-model mismatch KW - Reactor control KW - CONSENS PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-524531 SN - 1522-2640 VL - 53 IS - 2 SP - 11773 EP - 11779 PB - Elsevier CY - Amsterdam AN - OPUS4-52453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -