TY - JOUR A1 - Richter, Tim A1 - Schroepfer, Dirk A1 - Rhode, Michael A1 - Boerner, Andreas A1 - Saliwan Neumann, Romeo A1 - Schneider, M. A1 - Laplanche, G. T1 - Influence of machining on the surface integrity of high- and medium-entropy alloys JF - Materials Chemistry and Physics N2 - High- and medium-entropy alloys (HEAs) are a quite new class of materials. They have a high potential for applications from low to high temperatures due to the excellent combination of their structural properties. Concerning their application as components; processing properties, such as machinability, have hardly been investigated so far. Hence, machinability analyses with a focus on the influence of the milling process and its basic parameters (cutting speed, feed per cutting edge) on the resulting surface integrity of specimens from an equiatomic high- (CoCrFeMnNi) and a medium- (CoCrNi) entropy alloy have been carried out. A highly innovative milling process with ultrasonic assistance (USAM) was compared to conventional milling processes. Recent studies have shown that USAM has a high potential to significantly reduce the mechanical load on the tool and workpiece surface during milling. In this study, the basic machining and ultrasonic parameters were systematically varied. After machining, the surface integrity of the alloys was analyzed in terms of topography, defects, subsurface damage, and residual stresses. It was observed that USAM reduces the cutting forces and increases the surface integrity in terms of lower tensile residual stresses and defect density near the surfaces for the CoCrFeMnNi alloy. It was shown that the cutting forces and the metallurgical influence in the sub surface region are reduced by increasing the cutting speed and reducing the feed rate per cutting edge. With the CoCrNi alloy, the tool revealed severe wear. As a result, for this alloy no influence of the parameters on the machinability could be determined. KW - High Entropy Alloy KW - Medium Entropy Alloys KW - Ultrasonic assited machining PY - 2022 DO - https://doi.org/10.1016/j.matchemphys.2021.125271 SN - 0254-0584 VL - 275 SP - 125271 PB - Elsevier B.V. AN - OPUS4-53606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beckmann, Jörg A1 - Richter, Heike A1 - Zscherpel, Uwe A1 - Ewert, Uwe A1 - Weinzierl, J. A1 - Schmidt, L.-P. A1 - Rutz, F. A1 - Koch, M. A1 - Richter, H. A1 - Hübers, H.-W. T1 - Imaging Capability of Terahertz and Millimeter-Wave Instrumentations for NDT of Polymer Materials T2 - 9th European Conference on NDT T2 - 9th European Conference on NDT CY - Berlin, Germany DA - 2006-09-25 KW - Time domain spectroscopy KW - Air coupled ultrasound KW - Pulsed THz radiation system KW - Pulse compression KW - THz imaging PY - 2006 SN - 3-931381-86-2 SP - 1(?) EP - 9(?) PB - European Federation for Non-Destructive Testing CY - Berlin AN - OPUS4-13875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Götschel, S. A1 - Weiser, M. A1 - Maierhofer, Christiane A1 - Richter, Regina A1 - Röllig, Mathias ED - Büyüköztürk, O. ED - Tasdemir, M.A. ED - Günes, O. ED - Akkaya, Y. T1 - Fast defect shape reconstruction based on the travel time in pulse thermography T2 - Nondestructive testing of materials and structures N2 - Pulse thermography is a non-destructive testing method based on ­infrared imaging of transient thermal patterns. Heating the surface of the structure under test for a short period of time generates a non-stationary temperature distribution and thus a thermal contrast between the defect and the sound material. In modern NDT, a quantitative characterization of hidden imperfections in materials is desired. In particular, defect depth and shape are of interest. The reconstruction of the defect from thermography data is a nonlinear inverse problem, and ill-posed. We propose an algorithm for the identification of subsurface defects based on the travel time of the reflected thermal pulse. Our work extends results by Lugin and Netzelmann, taking lateral thermal flows directly into account while retrieving the defect depth. This requires significantly less computational work. Quantitative information about the defect shape and depth is obtained. Application of our method to both thermography data generated by a finite element simulation and experimental heating of PVC test specimens with different defects yields good reconstruction of the actual defects. KW - Defect shape reconstruction KW - Finite element simulation KW - Pulsed thermography KW - Quantitative characterization KW - Thermal contrast KW - Inversion KW - Aktive Thermografie KW - Wanddicke KW - Rückwand KW - Minderdicken KW - Schichtdicken KW - Thermische Welle PY - 2013 SN - 978-94-007-0722-1 DO - https://doi.org/10.1007/978-94-007-0723-8_11 SN - 2211-0844 N1 - Serientitel: RILEM bookseries – Series title: RILEM bookseries VL - 6 SP - 83 EP - 89 PB - Springer AN - OPUS4-27619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Traub, Heike A1 - Cappella, Brunero A1 - Álvarez-Llamas, C. A1 - Méndez, A. A1 - Richter, Silke A1 - Ruiz Encinar, J. A1 - Costa-Fernandez, J. M. A1 - Bordel, N. T1 - Exploring quantitative cellular biomaging and assessment of CdSe/ZnS quantum dots cellular uptake in single cells, using ns-LA-ICP-SFMS JF - Talanta N2 - High spatially resolved quantitative bioimaging of CdSe/ZnS Quantum Dots uptake in two kinds of cells is investigated combining laser ablation inductively coupled plasma mass spectrometry and the spatially resolved analysis of dried pL-droplets from a solution with a known concentration of Quantum Dots. Single cells and dried pL-droplets are morphologically characterized by Atomic Force Microscopy. A number concentration of CdSe/ZnS QDs between 3.5 104 and 48 104 is estimated to be uptaken by several selected single cells, after being incubated in the presence of a QDs suspension added to a standard cell culture medium. Mono-elemental bioimaging at subcellular resolution seems to show a higher number concentration of the CdSe/ZnS QDs in the cytosol around the cell nucleus. KW - LA-ICP-SFMS KW - Fast single pulse response KW - Quantitative bioimaging KW - Cellular uptake KW - HT22 KW - HeLa KW - Single cell KW - pL-droplets KW - CdSe/ZnS quantum Dots KW - AFM PY - 2021 DO - https://doi.org/10.1016/j.talanta.2021.122162 SN - 0039-9140 VL - 227 SP - 122162 PB - Elsevier B.V. AN - OPUS4-52121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alasonati, E. A1 - Fabbri, B. A1 - Fettig, Ina A1 - Yardin, C. A1 - Del Castillo Busto, M.E. A1 - Richter, Janine A1 - Philipp, Rosemarie A1 - Fisicaro, P. T1 - Experimental design for TBT quantification by isotope dilution SPE-GC-ICP-MS under the European water framework directive JF - Talanta N2 - In Europe the maximum allowable concentration for tributyltin (TBT) compounds in surface water has been regulated by the water framework directive (WFD) and daughter directive that impose a limit of 0.2 ng L-1 in whole water (as tributyltin cation). Despite the large number of different methodologies for the quantification of organotin species developed in the last two decades, standardised analytical methods at required concentration level do not exist. TBT quantification at picogram level requires efficient and accurate sample preparation and preconcentration, and maximum care to avoid blank contamination. To meet the WFD requirement, a method for the quantification of TBT in mineral water at environmental quality standard (EQS) level, based on solid phase extraction (SPE), was developed and optimised. The quantification was done using species-specific isotope dilution (SSID) followed by gas chromatography (GC) coupled to inductively coupled plasma mass spectrometry (ICP–MS). The analytical process was optimised using a design of experiment (DOE) based on a factorial fractionary plan. The DOE allowed to evaluate 3 qualitative factors (type of stationary phase and eluent, phase mass and eluent volume, pH and analyte ethylation procedure) for a total of 13 levels studied, and a sample volume in the range of 250–1000 mL. Four different models fitting the results were defined and evaluated with statistic tools: one of them was selected and optimised to find the best procedural conditions. C18 phase was found to be the best stationary phase for SPE experiments. The 4 solvents tested with C18, the pH and ethylation conditions, the mass of the phases, the volume of the eluents and the sample volume can all be optimal, but depending on their respective combination. For that reason, the equation of the model conceived in this work is a useful decisional tool for the planning of experiments, because it can be applied to predict the TBT mass fraction recovery when the experimental conditions are drawn. This work shows that SPE is a convenient technique for TBT pre-concentration at pico-trace levels and a robust approach: in fact (i) number of different experimental conditions led to satisfactory results and (ii) the participation of two institutes to the experimental work did not impact the developed model. KW - Tributyltin KW - Organotin compounds KW - Solid-phase extraction KW - Experimental design KW - Water framework directive KW - Isotope dilution PY - 2015 DO - https://doi.org/10.1016/j.talanta.2014.11.064 SN - 0039-9140 VL - 134 SP - 576 EP - 586 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-32696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Kipphardt, Heinrich A1 - Richter, Silke A1 - Bremser, Wolfram A1 - Arvizu Torres, M. A1 - Lara Manzano, J. A1 - Buzoianu, M. A1 - Hill, S. A1 - Petrov, P. A1 - Goenaga-Infante, H. A1 - Sargent, M. A1 - Fisicaro, P. A1 - Labarraque, G. A1 - Zhou, T. A1 - Turk, G. C. A1 - Winchester, M. A1 - Miura, T. A1 - Methven, B. A1 - Sturgeon, R. A1 - Jährling, R. A1 - Rienitz, O. A1 - Mariassy, M. A1 - Hankova, Z. A1 - Sobina, E. A1 - Krylov, A. I. A1 - Kustikov, Y. A. A1 - Smirnov, V. V. T1 - Establishing comparability and compatibility in the purity assessment of high purity zinc as demonstrated by the CCQM-P149 intercomparison JF - Metrologia : international journal of pure and applied metrology N2 - For the first time, an international comparison was conducted on the determination of the purity of a high purity element. Participants were free to choose any analytical approach appropriate for their institute’s applications and services. The material tested was a high purity zinc, which had earlier been assessed for homogeneity and previously used in CCQM-K72 for the determination of six defined metallic impurities. Either a direct metal assay of the Zn mass fraction was undertaken by EDTA titrimetry, or an indirect approach was used wherein all impurities, or at least the major ones, were determined and their sum subtracted from ideal purity of 100 %, or 1 kg/kg. Impurity assessment techniques included glow discharge mass spectrometry, inductively coupled plasma mass spectrometry and carrier gas hot extraction/combustion analysis. Up to 91 elemental impurities covering metals, non-metals and semi-metals/metalloids were quantified. Due to the lack of internal experience or experimental capabilities, some participants contracted external laboratories for specific analytical tasks, mainly for the analysis of non-metals. The reported purity, expressed as zinc mass fraction in the high purity zinc material, showed excellent agreement for all participants, with a relative standard deviation of 0.011 %. The calculated reference value, w(Zn) = 0.999 873 kg/kg, was assigned an asymmetric combined uncertainty of + 0.000025 kg/kg and – 0.000028 kg/kg. Comparability amongst participating metrology institutes is thus demonstrated for the purity determination of high purity metals which have no particular difficulties with their decomposition / dissolution process when solution-based analytical methods are used, or which do not have specific difficulties when direct analysis approaches are used. Nevertheless, further development is required in terms of uncertainty assessment, quantification of non-metals and the determination of purity of less pure elements and/or for those elements suffering difficulties with the decomposition process. KW - Purity assessment KW - Direct metal assay KW - Impurity assessment KW - Non-metal analysis KW - High-purity elements KW - SI-traceability PY - 2018 DO - https://doi.org/10.1088/1681-7575/aaa677 SN - 1681-7575 SN - 0026-1394 VL - 55 IS - 2 SP - 211 EP - 221 PB - Institute of Physics Publishing CY - Bristol AN - OPUS4-44257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zorn, R. A1 - Mayorova, M. A1 - Richter, D. A1 - Schönhals, Andreas A1 - Hartmann, L. A1 - Kremer, F. A1 - Frick, B. T1 - Effect of Nanoscopic Confinement on the Microscopic Dynamics of Glass-Forming Liquids and Polymers Studied by Inelastic Neutron Scattering T2 - AIP Conference Proceedings 982 N2 - In this article we present inelastic neutron scattering (INS) experiments on different systems of confined glass-formers. The aim of these experiments is to study the influence of spatial restriction on the microscopic dynamics related to the glass transition. Such results could be helpful for the detection of a currently speculated cooperativity length of the glass transition. The glass-forming component is either a molecular liquid or a polymer. The confining matrices are `hard' (silica glass, silicon) or `soft' (microemulsion droplets). For some experiments the confining structure could be spatially oriented. Except for the soft confinement the naïvely expected acceleration effect could only be found at low temperatures where INS experiments are difficult because of the long relaxation times. A clear effect of confinement could be observed for the glass-typical low energy vibrations (boson peak). This effect seems to be completely different for soft and hard confinement. Surprisingly, the experiments on oriented nanopores did not show any signs of an anisotropy of the dynamics. KW - Alpha relaxation KW - Boson peak KW - Confinement KW - Cooperativity length KW - Glass transition PY - 2008 SN - 978-0-7354-0501-1 DO - https://doi.org/10.1063/1.2897907 SN - 0094-243X SN - 1551-7616 SP - 79 EP - 84 PB - American Institute of Physics CY - Melville, NY, USA AN - OPUS4-17454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, M.D. A1 - Becker-Ross, H. A1 - Okruss, M. A1 - Geisler, S. A1 - Florek, S. A1 - Richter, Silke A1 - Meckelburg, Angela T1 - Direct determination of fluorine in niobium oxide using slurry sampling electrothermal high-resolution continuum source molecular absorption spectrometry JF - Spectrochimica acta B N2 - Aiming for a round-robin test, a new method for the direct determination of fluorine in niobium oxide has been developed. It is based on the use of high-resolution molecular absorption spectra of calcium mono-fluoride (CaF) generated in the graphite tube, combined with the slurry sampling technique. The absorption measurement was performed at the 606.44 nm CaF rotational line. By using graphite tubes with zirconium carbide (ZrC) modified platform, the molecular absorption sensitivity of CaF has been improved by a factor of 20, and no additional chemical modifier was necessary. Generally, non-spectral interferences were observed in the presence of HCl, H2SO4, and H3PO4. For HCl, additional spectral interference occurred due to an overlap of the absorption spectra of CaF and CaCl. However, due to the absence of these mentioned substances in the current material, such interferences do not exist for this application. The characteristic mass found for the CaF 606.44 nm line was 0.1 ng; the limit of detection was 5 mg fluorine per kg solid sample (3σ criterion). The results obtained by the method were within the range of certified values. Comparing to the classical method such as the pyrohydrolysis-photometric method, the developed new method showed clear advantages regarding sensitivity and specificity. The time requirement for one sample analysis was strongly shortened from several hours to only some minutes. KW - Continuum source molecular absorption spectrometry KW - Fluorine determination KW - Niobium oxide KW - Slurry sampling PY - 2014 DO - https://doi.org/10.1016/j.sab.2014.02.005 SN - 0584-8547 SN - 0038-6987 VL - 94-95 SP - 34 EP - 38 PB - Elsevier CY - Amsterdam AN - OPUS4-30655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Götschel, S. A1 - Weiser, M. A1 - Maierhofer, Christiane A1 - Richter, Regina ED - Cardone, G. T1 - Data enhancement for active thermography T2 - QIRT 2012 - 11th International conference on Quantitative InfraRed Thermography (Proceedings) T2 - QIRT 11 - 11th International conference on Quantitative InfraRed Thermography CY - Naples, Italy DA - 2012-06-11 KW - Datenglättung KW - Rekonstruktion PY - 2012 SP - 1 EP - 9(?) AN - OPUS4-26447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Bouzas-Ramos, D. A1 - Traub, Heike A1 - Cappella, Brunero A1 - Alvarez-Llamas, C. A1 - Richter, Silke A1 - Mayo, J. C. A1 - Costa-Fernandez, J. M. A1 - Bordel, N. A1 - Jakubowski, Norbert T1 - Critical evaluation of fast and highly resolved elemental distribution in single cells using LA-ICP-SFMS JF - Journal of Analytical Atomic Spectrometry N2 - The analytical potential of a nanosecond laser ablation inductively coupled plasma mass spectrometer (ns-LA-ICP-SFMS) system, equipped with an ultra-fast wash-out ablation chamber, is critically investigated for fast and highly spatially resolved (∼μm) qualitative elemental distribution within single cells. Initially, a low surface roughness (< 10 nm) thin In–SnO2 layer (total coating thickness ∼200 nm) deposited on glass is employed to investigate the size, morphology and overlapping of laser-induced craters obtained at different laser repetition rates, making use of Atomic Force Microscopy (AFM). Conical craters with a surface diameter of about 2 µm and depths of about 100 nm were measured after a single laser shot. Furthermore, the influence of the sampling distance (i.e. distance between the sample surface and the inner sniffer of the ablation chamber) on the LA-ICP-MS ion signal wash-out time is evaluated. A significant decrease of the transient 120Sn+ ion signal is noticed after slight variations (±200 μm) around the optimum sampling position. Ultra-fast wash-outs (< 10 ms) are achieved reducing the aerosol mixing from consecutive laser shots even when operating the laser at high repetition rates (25 – 100 Hz). Fast and highly spatially resolved images of elemental distribution within mouse embryonic fibroblast cells (NIH/3T3 fibroblast cells) and human cervical carcinoma cells (HeLa cells), incubated with gold nanoparticles (Au NPs) and Cd-based quantum dots (QDs), respectively, are determined at the optimized operating conditions. Elemental distribution of Au and Cd in single cells is achieved using a high scanning speed (50 µm/s) and high repetition rate (100 Hz). The results obtained for the distribution of fluorescent Cd-based QDs within the HeLa cells are in good agreement with those obtained by confocal microscopy. The size, morphology and overlapping of laser-induced craters in the fixed cells are also investigated using AFM, observing conical craters with a surface diameter of about 2.5 µm and depths of about 800 nm after a single laser shot. KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Atomic Force Microscopy KW - Cell PY - 2018 DO - https://doi.org/10.1039/c8ja00096d SP - 1 EP - 9 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-45564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -