TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Manzoni, Anna Maria A1 - Schneider, M. A1 - Laplanche, G. T1 - Welding of high-entropy alloys and compositionally complex alloys - an overview JF - Welding in the World N2 - High-entropy alloys (HEAs) and compositionally complex alloys (CCAs) represent new classes of materials containing five or more alloying elements (concentration of each element ranging from 5 to 35 at. %). In the present study, HEAs are defined as single-phase solid solutions; CCAs contain at least two phases. The alloy concept of HEAs/CCAs is fundamentally different from most conventional alloys and promises interesting properties for industrial applications (e.g., to overcome the strength-ductility trade-off). To date, little attention has been paid to the weldability of HEAs/CCAs encompassing effects on the welding metallurgy. It remains open whether welding of HEAs/CCAs may lead to the formation of brittle intermetallics and promote elemental segregation at crystalline defects. The effect on the weld joint properties (strength, corrosion resistance) must be investigated. The weld metal and heat-affected zone in conventional alloys are characterized by non-equilibrium microstructural evolutions that most probably occur in HEAs/CCAs. The corresponding weldability has not yet been studied in detail in the literature, and the existing information is not documented in a comprehensive way. Therefore, this study summarizes the most important results on the welding of HEAs/CCAs and their weld joint properties, classified by HEA/CCA type (focused on CoCrFeMnNi and AlxCoCrCuyFeNi system) and welding process. KW - High-entropy alloy KW - Compositionally complex alloy KW - Welding KW - Properties KW - Review PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527068 DO - https://doi.org/10.1007/s40194-021-01110-6 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-52706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - D'Agostino, G. A1 - Bergamaschi, L. A1 - Giordani, L. A1 - Oddone, M. A1 - Kipphardt, Heinrich A1 - Richter, Silke T1 - Use of instrumental neutron activation analysis to investigate the distribution of trace elements among subsamples of solid materials JF - Metrologia N2 - The results of analytical measurements performed with solid-sampling techniques are affected by the distribution of the analytes within the matrix. The effect becomes significant in case of determination of trace elements in small subsamples. In this framework we propose a measurement model based on Instrumental Neutron Activation Analysis to determine the relative variability of the amount of an analyte among subsamples of a material. The measurement uncertainty is evaluated and includes the counting statistics, the full-energy gamma peak efficiency and the spatial gradient of the neutron flux at the irradiation position. The data we obtained in a neutron activation experiment and showing the relative variability of As, Au, Ir, Sb and W among subsamples of a highly pure Rh foil are also presented. KW - Instrumental neutron activation analysis KW - Homogeneity KW - Rhodium KW - Uncertainty PY - 2014 SN - 0026-1394 SN - 1681-7575 VL - 51 SP - 1 EP - 6 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Tim A1 - Delgado Arroyo, Diego A1 - Börner, Andreas A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Lindner, T. A1 - Löbel, M. A1 - Preuß, B. A1 - Lampke, T. T1 - Ultrasonic assisted milling of a CoCrFeNi medium entropy alloy JF - Procedia CIRP N2 - Medium and High Entropy Alloys (MEA/HEA) are recently developed material classes, providing manifold applications, e.g., due to extraordinary structural properties. In that connection, the machinability as important issue for the processing of these materials was not in the scientific focus. This study focusses on experimental analysis of milling process conditions including ultrasonic assisted milling (USAM) and their effects on the resulting surface integrity of equiatomic CoCrFeNi-MEA specimens. For that reason, milling parameters (cutting speed, feed per cutting edge) were systematically varied for both conventional milling and USAM. The surface integrity was analyzed in terms of topography, defects, and residual stresses. Especially USAM leads to a decrease of occurring cutting forces and, hence, to an improvement of the surface integrity. Beneficial effects were observed in terms of lower tensile residual stresses at high cutting speed and feed per cutting edge. KW - Medium entropy alloy KW - Ultrasonic Assisted Machining KW - Surface Integrity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554458 DO - https://doi.org/10.1016/j.procir.2022.05.203 VL - 108 SP - 879 EP - 884 PB - Elsevier B.V. AN - OPUS4-55445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alasonati, E. A1 - Fettig, I. A1 - Richter, Janine A1 - Philipp, Rosemarie A1 - Milačič, R. A1 - Sčančar, J. A1 - Zuliani, T. A1 - Tunç, M. A1 - Bilsel, M. A1 - Gören, A. A1 - Fisicaro, P. T1 - Towards tributyltin quantification in natural water at the Environmental Quality Standard level required by the Water Framework Directive JF - Talanta N2 - The European Union (EU) has included tributyltin (TBT) and its compounds in the list of priority water pollutants. Quality standards demanded by the EU Water Framework Directive (WFD) require determination of TBT at so low concentration level that chemical analysis is still difficult and further research is needed to improve the sensitivity, the accuracy and the precision of existing methodologies. Within the frame of a joint research project “Traceable measurements for monitoring critical pollutants under the European Water Framework Directive” in the European Metrology Research Programme (EMRP), four metrological and designated institutes have developed a primary method to quantify TBT in natural water using liquid–liquid extraction (LLE) and species-specific isotope dilution mass spectrometry (SSIDMS). The procedure has been validated at the Environmental Quality Standard (EQS) level (0.2 ng L−1 as cation) and at the WFD-required limit of quantification (LOQ) (0.06 ng L−1 as cation). The LOQ of the methodology was 0.06 ng L−1 and the average measurement uncertainty at the LOQ was 36%, which agreed with WFD requirements. The analytical difficulties of the method, namely the presence of TBT in blanks and the sources of measurement uncertainties, as well as the interlaboratory comparison results are discussed in detail. KW - Tributyltin KW - Water Framework Directive KW - Metrological traceability KW - ICP-MS KW - Isotope dilution PY - 2016 DO - https://doi.org/10.1016/j.talanta.2016.07.056 SN - 0039-9140 SN - 1873-3573 VL - 160 SP - 499 EP - 511 PB - Elsevier B.V. AN - OPUS4-37407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mushtaq, S. A1 - Steers, E.B.M. A1 - Barnhart, D. A1 - Churchill, G. A1 - Kasik, M. A1 - Richter, Silke A1 - Pfeifer, Jens A1 - Putyera, K. T1 - The production of doubly charged sample ions by “charge transfer and ionization” (CTI) in analytical GD-MS JF - Journal of Analytical Atomic Spectrometry N2 - Normally, in analytical GD-MS, the doubly charged metallic ion signals from the sample are several orders of magnitude less than the corresponding singly charged signals. However, we have observed that using a neon plasma, the M++ signals of some elements, which have double ionization energies close to the first ionization energy of neon, are of the same order as the M+ signal. Doubly charged ions may be produced directly in the discharge cell by electron ionization (EI), and also by two electron Penning ionization (TEP), but these processes cannot explain the above effect. In this paper, we suggest that an additional process named as ‘Charge Transfer and Ionization’ (CTI) produces such ions either in their ionic ground state or in an excited state. To confirm that this process is typical of the discharges used in GD-MS and not an artefact of any particular form of cell and ion extraction system, we have carried out comprehensive experimental measurements using three different GD-MS instruments, viz., Nu Astrum, VG9000 and ELEMENT GD and our results provide clear evidence for CTI. This is the first time the process has been identified as an ionization process in analytical GD-MS. CTI must be differentiated from Asymmetric Charge Transfer (ACT), which is a “selective” process and requires a close energy match (e.g. ΔE < 0.5 eV for a strong effect). On the other hand, CTI is “non-selective” in the sense that a close energy match is not required (e.g. a strong effect is observed with ΔE ∼ 2 eV), although the process only occurs for a limited number of elements, depending on the plasma gas used and the total energy required to doubly ionize the metallic atom. KW - Titanium KW - Glow discharge processes KW - Doubly charged ions KW - The charge transfer and ionization process (CTI) KW - Krypton KW - Neon PY - 2017 DO - https://doi.org/10.1039/C6JA00415F SN - 0267-9477 SN - 1364-5544 VL - 32 IS - 9 SP - 1721 EP - 1729 PB - Royal Society of Chemistry AN - OPUS4-41108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, S. A1 - Timmel, S. A1 - Richter, S. A1 - Werner, M. A1 - Gläser, M. A1 - Swatek, S. A1 - Braun, Ulrike A1 - Hagendorf, C. T1 - Silver nanoparticles cause snail trails in photovoltaic modules JF - Solar energy materials & solar cells N2 - After some months of operation, a number of PV modules develop a discolouration defect called 'snail trails', or 'snail traces', which appear as irregular dark stripes across the cells. Whereas these traces were soon identified as discoloured silver contacts along the cell edges or at micro cracks, the chemical and mechanistic reasons for this phenomenon have not yet been resolved in detail. In this work we show that silver nanoparticles accumulating within the encapsulation foil cause the brownish discolouration, and that certain additives of encapsulation and back sheet foils trigger the formation of these nanoparticles. KW - Snail trails KW - Cell cracks KW - Encapsulation foil KW - Ag contact finger KW - Nanoparticles PY - 2014 DO - https://doi.org/10.1016/j.solmat.2013.11.013 SN - 0927-0248 VL - 121 SP - 171 EP - 175 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-30059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, M. A1 - Trunschke, A. A1 - Bentrup, U. A1 - Brzezinka, Klaus-Werner A1 - Schreier, E. A1 - Schneider, M. A1 - Pohl, M.-M. A1 - Fricke, R. T1 - Selective Catalytic Reduction of Nitric Oxide by Ammonia over Egg-Shell MnOx/NaY Composite Catalysts JF - Journal of catalysis N2 - A novel composite catalyst system for the selective catalytic reduction (SCR) of NOx by NH3 is described operating at temperatures lower than 470 K in the presence of water with NO conversions of 80–100% at space velocities of 30,000–50,000 h-1. The catalyst is prepared by egg-shell precipitation of MnO2 on the external surface of zeolite NaY. Structural and thermal stability of precipitated MnO2 as well as of the MnO2/NaY composite catalyst were characterized by N2 adsorption, X-ray diffraction, laser Raman spectroscopy, temperature-programmed reduction, and electron microscopy. MnO2 precipitated on zeolite NaY (15 wt% loading) retained its amorphous state up to calcination temperatures of 775 K. The zeolite component remained structurally intact. Calcination at higher temperatures destroyed the zeolite structure and transformed MnO2 into Mn3O4. DRIFT spectroscopic investigations revealed the presence of symmetric O=N—O—N=O species formally corresponding to N2O3 on the composite catalyst after contact with NO. Catalytic measurements under integral flow conditions showed that the catalyst performance is associated with a close coupling of nitrite formation and its drain off from equilibria with NO/NO2 and nitrate by ammonia. Several results are in line with the “diazotation” mechanism, including NH3 protonation to NH4+, whereas prevailing Lewis acid sites should enable NH3 activation via amide species, thus leading to a parallel “amide/nitrosamide” SCR reaction route. The activity-temperature profile fulfills the requirements of a low-temperature NOx reduction catalyst for mobile diesel engines if an ammonia supply is implemented “on board,” e.g., by urea decomposition. PY - 2002 DO - https://doi.org/10.1006/jcat.2001.3468 SN - 0021-9517 SN - 1090-2694 VL - 206 SP - 98 EP - 113 PB - Acad. Press CY - San Diego, Calif. AN - OPUS4-1638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Matthias A1 - Mull, Birte A1 - Horn, Wolfgang A1 - Brödner, Doris A1 - Mölders, N. A1 - Renner, M. T1 - Reproducibly emitting reference material on thermoplastic polyurethane basis for quality assurance/quality control of emission test chamber measurements JF - Building and Environment N2 - Volatile Organic Compounds (VOC) are ubiquitous in the indoor air since they are emitted from materials used indoors. Investigations of these materials are mostly carried out in emission test chambers under controlled climatic conditions. Reference materials are an important tool for quality assurance/Quality control of emission test chamber measurements but so far they are not commercially available. In this study, a new approach was tested to develop an appropriate reference material with homogenous and reproducible emission of the VOC with well measurable air concentrations in emission test Chambers larger than 20 L at air change rates of 0.5 - 1 /h. Thermoplastic Polyurethane (TPU) was selected as Matrix material which was impregnated with 2,2,4- trimethyl-1,3-pentanediol monoisobutyrate (texanol) as test VOC using compressed carbon dioxide. An optimization of the impregnation parameters such as temperature, pressure, time, VOC injection volume and TPU sample size was performed until the targeted area specific Emission rate (SERa) value was reached. Further aspects like process control, storage effects and correlation of the sample size to the emission rate were investigated. It was found that the SERa immediately after sample preparation were not reproducible between the batches but became unified 10 days after loading into the test chamber indicating the necessity of aging before use. SERa between 13,000 and 18,000 mg m-2 h-1 were obtained, and the impregnated materials could be well stored in aluminum-coated polyethylene foil for at least seven weeks without significant losses. Furthermore, the impregnation of styrene and the SVOC 2,6-diisopropylnaphthalene was tested. KW - Reference material KW - Emissions testing KW - Volatile organic compounds KW - Polymer material KW - CO2 assisted impregnation PY - 2017 DO - https://doi.org/10.1016/j.buildenv.2017.06.005 SN - 0360-1323 SN - 1873-684X VL - 122 SP - 230 EP - 236 PB - Elsevier AN - OPUS4-40646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poppenberg, J. A1 - Richter, S. A1 - Traulsen, C.H.-H. A1 - Darlatt, Erik A1 - Baytekin, B. A1 - Heinrich, T. A1 - Deutinger, P.M. A1 - Huth, K. A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - Programmable multilayers of nanometer-sized macrocycles on solid support and stimuli-controlled on-surface pseudorotaxane formation JF - Chemical science N2 - Mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes are capable of mechanical motion on the nanoscale and are therefore promising prototypes for molecular machines in recent nanotechnology. However, most of the existing examples are isotropically distributed in solution, which prohibits concerted movement and with it the generation of macroscopic effects. Thus, arranging them in ordered arrays is of huge interest in recent research. We report the deposition of quite densely packed multilayers of tetralactam macrocycles on gold surfaces by metal-coordinated layer-by-layer self-assembly. Linear dichroism effects in angle-resolved NEXAFS spectra indicate a preferential orientation of the macrocycles. The sequence of the metal ions can be programmed by the use of different transition metal ions at each deposition step. Additionally, reversible on-surface pseudorotaxane formation was successfully realized by repeated uptake and release of axle molecules inside the macrocycles cavities. KW - ISO KW - Standard KW - Surface analysis KW - Imaging PY - 2013 DO - https://doi.org/10.1039/c3sc50558h SN - 2041-6520 SN - 2041-6539 VL - 4 SP - 3131 EP - 3139 PB - RSC CY - Cambridge AN - OPUS4-29049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poppenberg, J. A1 - Richter, S. A1 - Traulsen, Ch. H.-H. A1 - Darlatt, Erik A1 - Baytekin, B. A1 - Heinrich, Thomas A1 - Deutinger, P. M. A1 - Huth, K. A1 - Unger, Wolfgang A1 - Schalley, Ch. T1 - Programmable multilayers of nanometer-sized macrocycles on solid support and stimuli-controlled on-surface pseudorotaxane formation JF - Chemical Science N2 - Mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes are capable of mechanical motion on the nanoscale and are therefore promising prototypes for molecular machines in recent nanotechnology. However, most of the existing examples are isotropically distributed in solution, which prohibits concerted movement and with it the generation of macroscopic effects. Thus, arranging them in ordered arrays is of huge interest in recent research. We report the deposition of quite densely packed multilayers of tetralactam macrocycles on gold surfaces by metal-coordinated layer-by-layer self-assembly. Linear dichroism effects in angle-resolved NEXAFS spectra indicate a preferential orientation of the macrocycles. The sequence of the metal ions can be programmed by the use of different transition metal ions at each deposition step. Additionally, reversible on-surface pseudorotaxane formation was successfully realized by repeated uptake and release of axle molecules inside the macrocycles cavities. KW - NEXAFS KW - XPS KW - Supramolecular Chemistry KW - Multilayers KW - Pyridine KW - UV/Vis KW - Macrocycles KW - Pseudorotaxanes PY - 2013 DO - https://doi.org/10.1039/c3sc50558h VL - 4 IS - 8 SP - 3131 EP - 3139 AN - OPUS4-42668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ressel, P. A1 - Hao, P.H. A1 - Park, M.H. A1 - Yang, Z. C. A1 - Wang, L.C. A1 - Österle, Werner A1 - Kurpas, P. A1 - Richter, E. A1 - Kuphal, E. A1 - Hartnagel, H.L. T1 - Pd/Sb(Zn) and Pd/Ge(Zn) Ohmic Contacts on p-Type Indium Gallium Arsenide: The Employment of the Solid Phase Regrowth Principle to Achieve Optimum Electrical and Metallurgical Properties JF - Journal of electronic materials N2 - The development of two metallizations based on the solid-phase regrowth principle is presented, namely Pd/Sb(Zn) and Pd/Ge(Zn) on moderately doped In0.53Ga0.47As (p=4×1018 cm-3). Contact resistivities of 2–3×10-7 and 6–7×10-7 ?cm2, respectively, have been achieved, where both systems exhibit an effective contact reaction depth of zero and a Zn diffusion depth below 50 nm. Exhibiting resistivities equivalent to the lowest values of Au-based systems in this doping range, especially Pd/Sb(Zn) contacts are superior to them concerning metallurgical stability and contact penetration. Both metallizations have been successfully applied for contacting the base layer of InP/In0.53Ga0.47As heterojunction bipolar transistors. KW - Ohmic contacts KW - Indium gallium arsenide KW - InP/InGaAs heterojunction bipolar transistor KW - Solid-phase regrowth KW - Pd/Ge contacts KW - Pd/Sb contacts KW - Backside secondary ion mass spectrometry (SIMS) PY - 2000 DO - https://doi.org/10.1007/s11664-000-0189-y SN - 0361-5235 SN - 1543-186X VL - 29 IS - 7 SP - 964 EP - 972 PB - TMS CY - Warrendale, Pa. AN - OPUS4-7642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, B. A1 - Richter, M. A1 - Schultz, C. A1 - Pahl, H.-U. A1 - Endert, H. A1 - Bonse, Jörn A1 - Rau, B. A1 - Quaschning, V. A1 - Fink, F. T1 - One wavelength fits all JF - Photovoltaic production : technology along the value chain N2 - Structuring of Thin-film Solar Cells with a Single Laser Wavelength Structuring of a PV module into a number of cells is necessary to lower the current and to increase the voltage, and is typically accomplished with nanosecond laser pulses of different wavelengths. Duetothe many available laser sources, complex and expensive scribing Setups are necessary. To overcome this a concept for laser structuring of thin-film PV modules using a single wavelength allows prediction ofthe ablation behaviourfor a given laser pulse energy. KW - Thin-film solar cells KW - Nanosecond laser ablation KW - 532 nm wavelength KW - Laser scribing KW - Damage threshold PY - 2011 SN - 1869-8913 VL - 2 IS - 6 SP - 46 EP - 48 PB - Hüthig CY - Heidelberg AN - OPUS4-24158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shaik, A.-A. A1 - Richter, M. A1 - Kricheldorf, H. A1 - Krüger, Ralph-Peter T1 - New polymer syntheses - CIX. Biodegradable, alternating copolyesters of terephthalic acid, aliphatic dicarboxylic acids, and alkane diols JF - Journal of polymer science A, polymer chemistry N2 - Copolyesters with an alternating sequence of terephthalic acid and aliphatic dicarboxylic acids were prepared with three different methods. First, dicarboxylic acid dichlorides were reacted with bis(2-hydroxyethyl)terephthalate (BHET) in refluxing 1,2-dichlorobenzene. Second, the same monomers were polycondensed at 0-20 °C in the presence of pyridine. Third, dicarboxylic acid dichlorides and silylated BHET were polycondensed in bulk. Only this third method gave satisfactory molecular weights. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry revealed that the copolyesters prepared by the pyridine and silyl methods might have contained considerable fractions of cyclic oligoesters and polyesters despite the absence of transesterification and backbiting processes. The alternating sequences and thermal properties were characterized with 1H NMR spectroscopy and differential scanning calorimetry measurements, respectively. In agreement with the alternating sequence, all copolyesters proved to be crystalline, but the crystallization was extremely slow [slower than that of poly(ethylene terephthalate)]. A second series of alternating copolyesters was prepared by the polycondensation of silylated bis(4-hydroxybut- yl)terephthalate with various aliphatic dicarboxylic acid dichlorides. The resulting copolyesters showed significantly higher rates of crystallization, and the melting temperatures were higher than those of the BHET-based copolyesters. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3371-3382, 2001 KW - Poly(ethylene terephthalate) KW - Poly(butylene terephthalate) KW - Alternating sequence KW - Macrocycles KW - Crystallization KW - Biodegradable polyesters PY - 2001 DO - https://doi.org/10.1002/pola.1320 SN - 0360-6376 SN - 0887-624X VL - 39 IS - 19 SP - 3371 EP - 3382 PB - Wiley CY - Hoboken, NJ AN - OPUS4-2173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matschat, Ralf A1 - Hassler, J. A1 - Richter, Silke A1 - Kleve, M. A1 - Dette, A. T1 - Multielement trace analysis of pure graphite powders using optical emission spectrometry coupled to a magnetically stabilized DC arc supplied with halogenating gases as chemical modifiers – a rapid and robust methodology JF - Journal of analytical atomic spectrometry : JAAS N2 - A magnetically stabilized DC arc device, designed for operation with OES spectrometers was used to determine the elements Ag, Al, B, Ba, Be, Ca, Co, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Mo, Na, Nb, Ni, Si, Sn, Sr, Ti, V, Zr at trace levels of some μg kg−1 up to some 10 mg kg−1 in graphite powders. The coil for the generation of the homogeneous magnetic field was placed outside the closed arc chamber. The time programs of variable current strengths of the magnetic coil (up to 6 A) and of the arc (up to 17 A) which was burning in air were computer controlled. Halogenating gases (mainly CCl2F2, alternatively SF6 and NF3) were used as chemical modifiers to allow an effective release of the carbide forming trace elements. The mass flow controlled modifier gas was led through a special carrier electrode near the arc plasma. The emission radiation was guided by an optical fiber alternatively into two different ICP spectrometers in which the ICP torches were removed. The synergistic interaction of the magnetic field with the halogenating modifier gases resulted in a significant improvement in the analytical performance of the optimized analytical method. All our results for 22 trace elements were in good agreement with the means of an inter-laboratory comparison by BAM for certification of a pure graphite powder material; this holds also for our results for two other graphite materials. The optimized method showed an analytical performance suitable for comprehensive trace analysis of pure graphite. The instrumentation could be integrated into modern DC arc emission spectrometers to improve their analytical capabilities substantially. KW - Graphit KW - DC-Arc KW - High purity KW - Optical emission spectroscopy KW - Magnetically stabilized PY - 2018 DO - https://doi.org/10.1039/C7JA00387K SN - 1364-5544 SN - 0267-9477 VL - 33 IS - 3 SP - 468 EP - 480 PB - Royal Society of Chemistry AN - OPUS4-44398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Berkes, L. A1 - Nehring, Grzegorz A1 - Bonnerot, O. A1 - Krutzsch, M. A1 - Rabin, Ira A1 - Richter, T. S. T1 - Mixed Inks in Two Coptic Documents from the Hermopolite Region Relating to Lease Business JF - Pylon N2 - In this article, we present two Coptic papyri, P 11934 and P 11935 from the Berlin collection excavated in Ashmunein (ancient Hermopolis) by Otto Rubensohn in 1906. We employ a multi-disciplinary approach that takes into account both their materiality – writing support as well as ink – and their content, as has become ‘best practice’. 1 Material aspects of written documents have traditionally been the purview of papyrologists. Recently developed methods of scientific analysis generate sets of archaeometric data with the potential to improve understanding of the materiality of ancient document production, as well as to yield new evidence for genuine papyrological research questions. To achieve this, a large corpus of comparative data needs to be built. Our contribution offers a first step in this direction. We aim at presenting the papyri, which were selected because of the ink corrosion during conservation work at the Berlin collection, in a format that is exhaustive both for material and textual aspects. The inks from both papyri were analysed using a combination of techniques, contributing to our better understanding of the development of ink technology in Late Antiquity. KW - Coptic papyri KW - Methods of scientific analysis KW - Sets of archaeometric data KW - Mixed Inks KW - Ink corrosion KW - Ancient document production PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579948 DO - https://doi.org/10.48631/pylon.2023.3.98234 SN - 2751-4722 VL - 2023/3 IS - 3 SP - 1 EP - 18 PB - Ceative Commons Attribution ShareAlike CY - Heidelberg, Germany AN - OPUS4-57994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Anja A1 - Possling, A. A1 - Malysheva, N. A1 - Yousef, K. P. A1 - Herbst, S. A1 - von Kleist, M. A1 - Hengge, R. T1 - Local c-di-GMP signaling in the control of synthesis of the E. coli biofilm exopolysaccharide pEtN-cellulose JF - Journal of Molecular Biology N2 - In many bacteria, the biofilm-promoting second messenger c-di-GMP is produced and degraded by multiple diguanylate cyclases (DGC) and phosphodiesterases (PDE), respectively. High target specificity of some of these enzymes has led to theoretical concepts of "local" c-di-GMP signaling. In Escherichia coli K-12, which has 12 DGCs and 13 PDEs, a single DGC, DgcC, is specifically required for the biosynthesis of the biofilm exopolysaccharide pEtN-cellulose without affecting the cellular c-di-GMP pool, but the mechanistic basis of this target specificity has remained obscure. DGC activity of membrane-associated DgcC, which is demonstrated in vitro in nanodiscs, is shown to be necessary and sufficient to specifically activate cellulose biosynthesis in vivo. DgcC and a particular PDE, PdeK (encoded right next to the cellulose operon), directly interact with cellulose synthase subunit BcsB and with each other, thus establishing physical proximity between cellulose synthase and a local source and sink of c-di-GMP. This arrangement provides a localized, yet open source of c-di-GMP right next to cellulose synthase subunit BcsA, which needs allosteric activation by c-di-GMP. Through mathematical modeling and simulation, we demonstrate that BcsA binding from the low cytosolic c-di-GMP pool in E. coli is negligible, whereas a single c-di-GMP molecule that is produced and released in direct proximity to cellulose synthase increases the probability of c-di-GMP binding to BcsA several hundred-fold. This local c-di-GMP signaling could provide a blueprint for target-specific second messenger signaling also in other bacteria where multiple second messenger producing and degrading enzymes exist. KW - Biofilm KW - Cellulose synthase KW - Bacterial second messenger KW - C-di-GMP PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511214 DO - https://doi.org/10.1016/j.jmb.2020.06.006 SN - 0022-2836 VL - 432 IS - 16 SP - 4576 EP - 4595 PB - Elsevir Ltd. AN - OPUS4-51121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Richter, Anja M. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-Textured Surfaces: A Way to Control Biofilm Formation? JF - Laser & Photonics Reviews N2 - Bacterial biofilms pose serious problems in medical and industrial settings. One of the major societal challenges lies in the increasing resistance of bacteria against biocides used in antimicrobial treatments, e.g., via overabundant use in medicine, industry, and agriculture or cleaning and disinfection in private households. Hence, new efficient bacteria-repellent strategies avoiding the use of biocides are strongly desired. One promising route to achieve bacteria-repellent surfaces lies in the contactless and aseptic large-area laser-processing of technical surfaces. Tailored surface textures, enabled by different laser-processing strategies that result in topographic scales ranging from nanometers to micrometers may provide a solution to this challenge. This article presents a current state-of-the-art review of laser-surface subtractive texturing approaches for controlling the biofilm formation for different bacterial strains and in different environments. Based on specific properties of bacteria and laser-processed surfaces, the challenges of anti-microbial surface designs are discussed, and future directions will be outlined. KW - Antibacterial surfaces KW - Biofilms KW - Laser processing KW - Laser-induced periodic surface structures (LIPSS) KW - Microbial adhesions PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588260 DO - https://doi.org/10.1002/lpor.202300753 SN - 1863-8899 SP - 1 EP - 41 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Silke A1 - Sargent, M. A1 - Schiel, D. A1 - Kipphardt, Heinrich T1 - Known purity - the fundament of element determination by atomic spectrometry JF - Journal of analytical atomic spectrometry N2 - Millions of measurements are performed each year by liquid based analytical atomic spectrometry to support healthcare, diagnostic tests, environmental monitoring, material assay, product development and safety. Despite the effort to develop absolute methods, most methods still depend on calibration solutions, which are gravimetric mixtures of high purity solvents and high purity (source material) metals or compounds. As in the real world ideal purity does not exist, the impurity of the solvent and the purity of the source material needs to be known. The impurity of a solvent with respect to one analyte can be measured rather easily and with low limits of determination. In contrast the measurement of the purity of the source material, i.e., the mass fraction of the main constituent in a high purity metal, is more difficult to determine. It becomes even more difficult when the source material is not a pure metal but a compound since problems regarding stoichiometry arise additionally. Although the major producers of calibration solutions make a special effort to determine the purity of the source material, the actual purity statement is often incomplete or not demonstrated. The main reason for this situation is the complexity and high effort necessary to fully characterize such a material. This problem holds to a very wide extent also for the primary standards for element determination at the National Metrology Institutes and Designated Institutes (NMIs and DIs). It is the task of the NMIs and DIs to realise and disseminate primary standards for providing traceability to the International System of Units (SI). The primary elemental standards at the NMIs should provide the link to secondary standards produced by commercial producers and other independently prepared standards for element determination. Without such primary standards, elemental calibration solutions may vary and, depending on the uncertainty required, comparability of measurement in time and space results cannot be achieved. KW - Traceability KW - Metrology KW - Atomic spectrometry KW - Primary reference materials PY - 2013 DO - https://doi.org/10.1039/c3ja90045b SN - 0267-9477 SN - 1364-5544 VL - 28 IS - 10 SP - 1540 EP - 1543 PB - Royal Society of Chemistry CY - London AN - OPUS4-30301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wäsche, Rolf A1 - Paulick, Carl A1 - Steinborn, Gabriele A1 - Richter, V. A1 - Werner, M. T1 - Joining of ceramic components in the green state via LPIM JF - Advanced materials research N2 - It has been successfully demonstrated that ceramic materials can be joined in the green state without a second phase by using low pressure injection molded parts. The investigation of the joining interface revealed that a high quality interface can be achieved by carefully adjusting the different manufacturing steps. The use of monomodal particle size distribution in the used powder CT3000SG is inferior to a broader particle size distribution obtained by replacing 33% of the finer alumina powder by coarser CT1200SG. In this way the dewaxing process is significantly improved when the wall thickness of the part exceeds 3 mm. The investigation of the mechanical properties of the joined and sintered parts revealed, that the bending strength of the joined specimens achieved about 80 % of the unjoined, monolithic specimens. T2 - 4th International Conference on Advanced Materials and Processing CY - Hamilton, New Zealand DA - 2006-12-10 KW - Joining KW - Ceramics KW - Green state KW - Interface KW - Bending strength KW - Low pressure injection molding PY - 2005 UR - http://www.scientific.net/3-908453-89-5/207/ SN - 1022-6680 SN - 1662-8985 VL - 29-30 SP - 207 EP - 210 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-19001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Tim A1 - Schroepfer, Dirk A1 - Rhode, Michael A1 - Boerner, Andreas A1 - Saliwan Neumann, Romeo A1 - Schneider, M. A1 - Laplanche, G. T1 - Influence of machining on the surface integrity of high- and medium-entropy alloys JF - Materials Chemistry and Physics N2 - High- and medium-entropy alloys (HEAs) are a quite new class of materials. They have a high potential for applications from low to high temperatures due to the excellent combination of their structural properties. Concerning their application as components; processing properties, such as machinability, have hardly been investigated so far. Hence, machinability analyses with a focus on the influence of the milling process and its basic parameters (cutting speed, feed per cutting edge) on the resulting surface integrity of specimens from an equiatomic high- (CoCrFeMnNi) and a medium- (CoCrNi) entropy alloy have been carried out. A highly innovative milling process with ultrasonic assistance (USAM) was compared to conventional milling processes. Recent studies have shown that USAM has a high potential to significantly reduce the mechanical load on the tool and workpiece surface during milling. In this study, the basic machining and ultrasonic parameters were systematically varied. After machining, the surface integrity of the alloys was analyzed in terms of topography, defects, subsurface damage, and residual stresses. It was observed that USAM reduces the cutting forces and increases the surface integrity in terms of lower tensile residual stresses and defect density near the surfaces for the CoCrFeMnNi alloy. It was shown that the cutting forces and the metallurgical influence in the sub surface region are reduced by increasing the cutting speed and reducing the feed rate per cutting edge. With the CoCrNi alloy, the tool revealed severe wear. As a result, for this alloy no influence of the parameters on the machinability could be determined. KW - High Entropy Alloy KW - Medium Entropy Alloys KW - Ultrasonic assited machining PY - 2022 DO - https://doi.org/10.1016/j.matchemphys.2021.125271 SN - 0254-0584 VL - 275 SP - 125271 PB - Elsevier B.V. AN - OPUS4-53606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Traub, Heike A1 - Cappella, Brunero A1 - Álvarez-Llamas, C. A1 - Méndez, A. A1 - Richter, Silke A1 - Ruiz Encinar, J. A1 - Costa-Fernandez, J. M. A1 - Bordel, N. T1 - Exploring quantitative cellular biomaging and assessment of CdSe/ZnS quantum dots cellular uptake in single cells, using ns-LA-ICP-SFMS JF - Talanta N2 - High spatially resolved quantitative bioimaging of CdSe/ZnS Quantum Dots uptake in two kinds of cells is investigated combining laser ablation inductively coupled plasma mass spectrometry and the spatially resolved analysis of dried pL-droplets from a solution with a known concentration of Quantum Dots. Single cells and dried pL-droplets are morphologically characterized by Atomic Force Microscopy. A number concentration of CdSe/ZnS QDs between 3.5 104 and 48 104 is estimated to be uptaken by several selected single cells, after being incubated in the presence of a QDs suspension added to a standard cell culture medium. Mono-elemental bioimaging at subcellular resolution seems to show a higher number concentration of the CdSe/ZnS QDs in the cytosol around the cell nucleus. KW - LA-ICP-SFMS KW - Fast single pulse response KW - Quantitative bioimaging KW - Cellular uptake KW - HT22 KW - HeLa KW - Single cell KW - pL-droplets KW - CdSe/ZnS quantum Dots KW - AFM PY - 2021 DO - https://doi.org/10.1016/j.talanta.2021.122162 SN - 0039-9140 VL - 227 SP - 122162 PB - Elsevier B.V. AN - OPUS4-52121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alasonati, E. A1 - Fabbri, B. A1 - Fettig, Ina A1 - Yardin, C. A1 - Del Castillo Busto, M.E. A1 - Richter, Janine A1 - Philipp, Rosemarie A1 - Fisicaro, P. T1 - Experimental design for TBT quantification by isotope dilution SPE-GC-ICP-MS under the European water framework directive JF - Talanta N2 - In Europe the maximum allowable concentration for tributyltin (TBT) compounds in surface water has been regulated by the water framework directive (WFD) and daughter directive that impose a limit of 0.2 ng L-1 in whole water (as tributyltin cation). Despite the large number of different methodologies for the quantification of organotin species developed in the last two decades, standardised analytical methods at required concentration level do not exist. TBT quantification at picogram level requires efficient and accurate sample preparation and preconcentration, and maximum care to avoid blank contamination. To meet the WFD requirement, a method for the quantification of TBT in mineral water at environmental quality standard (EQS) level, based on solid phase extraction (SPE), was developed and optimised. The quantification was done using species-specific isotope dilution (SSID) followed by gas chromatography (GC) coupled to inductively coupled plasma mass spectrometry (ICP–MS). The analytical process was optimised using a design of experiment (DOE) based on a factorial fractionary plan. The DOE allowed to evaluate 3 qualitative factors (type of stationary phase and eluent, phase mass and eluent volume, pH and analyte ethylation procedure) for a total of 13 levels studied, and a sample volume in the range of 250–1000 mL. Four different models fitting the results were defined and evaluated with statistic tools: one of them was selected and optimised to find the best procedural conditions. C18 phase was found to be the best stationary phase for SPE experiments. The 4 solvents tested with C18, the pH and ethylation conditions, the mass of the phases, the volume of the eluents and the sample volume can all be optimal, but depending on their respective combination. For that reason, the equation of the model conceived in this work is a useful decisional tool for the planning of experiments, because it can be applied to predict the TBT mass fraction recovery when the experimental conditions are drawn. This work shows that SPE is a convenient technique for TBT pre-concentration at pico-trace levels and a robust approach: in fact (i) number of different experimental conditions led to satisfactory results and (ii) the participation of two institutes to the experimental work did not impact the developed model. KW - Tributyltin KW - Organotin compounds KW - Solid-phase extraction KW - Experimental design KW - Water framework directive KW - Isotope dilution PY - 2015 DO - https://doi.org/10.1016/j.talanta.2014.11.064 SN - 0039-9140 VL - 134 SP - 576 EP - 586 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-32696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Kipphardt, Heinrich A1 - Richter, Silke A1 - Bremser, Wolfram A1 - Arvizu Torres, M. A1 - Lara Manzano, J. A1 - Buzoianu, M. A1 - Hill, S. A1 - Petrov, P. A1 - Goenaga-Infante, H. A1 - Sargent, M. A1 - Fisicaro, P. A1 - Labarraque, G. A1 - Zhou, T. A1 - Turk, G. C. A1 - Winchester, M. A1 - Miura, T. A1 - Methven, B. A1 - Sturgeon, R. A1 - Jährling, R. A1 - Rienitz, O. A1 - Mariassy, M. A1 - Hankova, Z. A1 - Sobina, E. A1 - Krylov, A. I. A1 - Kustikov, Y. A. A1 - Smirnov, V. V. T1 - Establishing comparability and compatibility in the purity assessment of high purity zinc as demonstrated by the CCQM-P149 intercomparison JF - Metrologia : international journal of pure and applied metrology N2 - For the first time, an international comparison was conducted on the determination of the purity of a high purity element. Participants were free to choose any analytical approach appropriate for their institute’s applications and services. The material tested was a high purity zinc, which had earlier been assessed for homogeneity and previously used in CCQM-K72 for the determination of six defined metallic impurities. Either a direct metal assay of the Zn mass fraction was undertaken by EDTA titrimetry, or an indirect approach was used wherein all impurities, or at least the major ones, were determined and their sum subtracted from ideal purity of 100 %, or 1 kg/kg. Impurity assessment techniques included glow discharge mass spectrometry, inductively coupled plasma mass spectrometry and carrier gas hot extraction/combustion analysis. Up to 91 elemental impurities covering metals, non-metals and semi-metals/metalloids were quantified. Due to the lack of internal experience or experimental capabilities, some participants contracted external laboratories for specific analytical tasks, mainly for the analysis of non-metals. The reported purity, expressed as zinc mass fraction in the high purity zinc material, showed excellent agreement for all participants, with a relative standard deviation of 0.011 %. The calculated reference value, w(Zn) = 0.999 873 kg/kg, was assigned an asymmetric combined uncertainty of + 0.000025 kg/kg and – 0.000028 kg/kg. Comparability amongst participating metrology institutes is thus demonstrated for the purity determination of high purity metals which have no particular difficulties with their decomposition / dissolution process when solution-based analytical methods are used, or which do not have specific difficulties when direct analysis approaches are used. Nevertheless, further development is required in terms of uncertainty assessment, quantification of non-metals and the determination of purity of less pure elements and/or for those elements suffering difficulties with the decomposition process. KW - Purity assessment KW - Direct metal assay KW - Impurity assessment KW - Non-metal analysis KW - High-purity elements KW - SI-traceability PY - 2018 DO - https://doi.org/10.1088/1681-7575/aaa677 SN - 1681-7575 SN - 0026-1394 VL - 55 IS - 2 SP - 211 EP - 221 PB - Institute of Physics Publishing CY - Bristol AN - OPUS4-44257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, M.D. A1 - Becker-Ross, H. A1 - Okruss, M. A1 - Geisler, S. A1 - Florek, S. A1 - Richter, Silke A1 - Meckelburg, Angela T1 - Direct determination of fluorine in niobium oxide using slurry sampling electrothermal high-resolution continuum source molecular absorption spectrometry JF - Spectrochimica acta B N2 - Aiming for a round-robin test, a new method for the direct determination of fluorine in niobium oxide has been developed. It is based on the use of high-resolution molecular absorption spectra of calcium mono-fluoride (CaF) generated in the graphite tube, combined with the slurry sampling technique. The absorption measurement was performed at the 606.44 nm CaF rotational line. By using graphite tubes with zirconium carbide (ZrC) modified platform, the molecular absorption sensitivity of CaF has been improved by a factor of 20, and no additional chemical modifier was necessary. Generally, non-spectral interferences were observed in the presence of HCl, H2SO4, and H3PO4. For HCl, additional spectral interference occurred due to an overlap of the absorption spectra of CaF and CaCl. However, due to the absence of these mentioned substances in the current material, such interferences do not exist for this application. The characteristic mass found for the CaF 606.44 nm line was 0.1 ng; the limit of detection was 5 mg fluorine per kg solid sample (3σ criterion). The results obtained by the method were within the range of certified values. Comparing to the classical method such as the pyrohydrolysis-photometric method, the developed new method showed clear advantages regarding sensitivity and specificity. The time requirement for one sample analysis was strongly shortened from several hours to only some minutes. KW - Continuum source molecular absorption spectrometry KW - Fluorine determination KW - Niobium oxide KW - Slurry sampling PY - 2014 DO - https://doi.org/10.1016/j.sab.2014.02.005 SN - 0584-8547 SN - 0038-6987 VL - 94-95 SP - 34 EP - 38 PB - Elsevier CY - Amsterdam AN - OPUS4-30655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Bouzas-Ramos, D. A1 - Traub, Heike A1 - Cappella, Brunero A1 - Alvarez-Llamas, C. A1 - Richter, Silke A1 - Mayo, J. C. A1 - Costa-Fernandez, J. M. A1 - Bordel, N. A1 - Jakubowski, Norbert T1 - Critical evaluation of fast and highly resolved elemental distribution in single cells using LA-ICP-SFMS JF - Journal of Analytical Atomic Spectrometry N2 - The analytical potential of a nanosecond laser ablation inductively coupled plasma mass spectrometer (ns-LA-ICP-SFMS) system, equipped with an ultra-fast wash-out ablation chamber, is critically investigated for fast and highly spatially resolved (∼μm) qualitative elemental distribution within single cells. Initially, a low surface roughness (< 10 nm) thin In–SnO2 layer (total coating thickness ∼200 nm) deposited on glass is employed to investigate the size, morphology and overlapping of laser-induced craters obtained at different laser repetition rates, making use of Atomic Force Microscopy (AFM). Conical craters with a surface diameter of about 2 µm and depths of about 100 nm were measured after a single laser shot. Furthermore, the influence of the sampling distance (i.e. distance between the sample surface and the inner sniffer of the ablation chamber) on the LA-ICP-MS ion signal wash-out time is evaluated. A significant decrease of the transient 120Sn+ ion signal is noticed after slight variations (±200 μm) around the optimum sampling position. Ultra-fast wash-outs (< 10 ms) are achieved reducing the aerosol mixing from consecutive laser shots even when operating the laser at high repetition rates (25 – 100 Hz). Fast and highly spatially resolved images of elemental distribution within mouse embryonic fibroblast cells (NIH/3T3 fibroblast cells) and human cervical carcinoma cells (HeLa cells), incubated with gold nanoparticles (Au NPs) and Cd-based quantum dots (QDs), respectively, are determined at the optimized operating conditions. Elemental distribution of Au and Cd in single cells is achieved using a high scanning speed (50 µm/s) and high repetition rate (100 Hz). The results obtained for the distribution of fluorescent Cd-based QDs within the HeLa cells are in good agreement with those obtained by confocal microscopy. The size, morphology and overlapping of laser-induced craters in the fixed cells are also investigated using AFM, observing conical craters with a surface diameter of about 2.5 µm and depths of about 800 nm after a single laser shot. KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Atomic Force Microscopy KW - Cell PY - 2018 DO - https://doi.org/10.1039/c8ja00096d SP - 1 EP - 9 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-45564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Bouzas-Ramos, D. A1 - Traub, Heike A1 - Cappella, Brunero A1 - Álvarez-Llamas, C. A1 - Richter, Silke A1 - Mayo, J. C. A1 - Costa-Fernandez, J. M. A1 - Bordel, N. A1 - Jakubowski, Norbert T1 - Critical evaluation of fast and highly resolved elemental distribution in single cells using LA-ICP-SFMS JF - Journal of Analytical Atomic Spectrometry N2 - The analytical potential of a nanosecond laser ablation coupled plasma mass spectrometer (ns-LA-ICP-SFMS)system is investigated for fast and highly spatially resolved (~µm) elemental distribution within single cells. The size, morphology and overlapping of laser-induced craters has been investigated with Atomic Force Microscopy (AFM). KW - Atomic Force Microscopy KW - Laser Ablation KW - Elemental Distribution PY - 2019 DO - https://doi.org/10.1039/c8ja00096d SN - 0267-9477 VL - 34 IS - 4 SP - 655 EP - 663 PB - RSC AN - OPUS4-48549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, M. A1 - Fenker, M. A1 - Kappl, H. A1 - Müller, Thoralf A1 - Heyn, A. A1 - Heiss, A. A1 - Richter, A. T1 - Corrosion protection of steel substrates by magnetron sputtered TiMgN hard coatings: Structure, mechanical properties and growth defect related salt spray test results JF - Surface & Coatings Technology N2 - Hard and wear resistant coatings deposited by PVD techniques have been characterized for decades for their capabilities to protect steel substrates from corrosion. In the present work the effect of Mg incorporated into TiN coatings is described in terms of the corrosion behavior as well as the mechanical and structural properties. TiN and TiMgN films with Mg contents between 10 and 35 at.% were deposited onto mirror polished 100Cr6 (1.3505) steel samples with 2.5 and 5 μm thickness by using DC magnetron sputtering. The corrosion protection capabilities of the coatings were characterized by neutral salt spray (NSS) test, considering the amounts and sizes of growth defects inherent in each coated sample as determined by a recently developed optical scan method (Large Area High Resolution mapping). The defect data were statistically analyzed for improved interpretation of NSS test results. Chosen growth defects were additionally analyzed by focused ion beam technique. Furthermore the coating composition and morphology, the hardness and the tribological behavior were characterized. Polished steel samples coated with 2.5 μm TiMgN containing about 35 at.% Mg were in the plane free of corrosion after 24 h in a NSS test. TiMgN with 10 or 20 at.% Mg only provided a slightly improved corrosion protection in relation to pure TiN coatings, which was limited to certain types of growth defects. The highest Mg containing coatings exhibited a decreased hardness down to 1200 or 1800 HV depending on type of deposition (HV 1200: Ti- and Mg-target with rotating substrate holder, 1800: Mg-plugged Ti-target with static substrate holder), but also showed a strongly improved wear resistance against Al2O3 related to pure TiN. By analyzing the NSS test results it was found that the corrosion behavior of the coated samples did not only depend strongly on the Mg content, but also on the sample individual defect concentrations. Therefore this subject is extensively discussed. KW - Physical vapour deposition (PVD) KW - Corrosion KW - Growth defects KW - Pinholes KW - Magnesium KW - TiMgN PY - 2018 DO - https://doi.org/10.1016/j.surfcoat.2018.05.037 SN - 0257-8972 VL - 349 IS - 9 SP - 82 EP - 92 PB - Elsevier B.V. AN - OPUS4-45712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bastuck, M. A1 - Baur, T. A1 - Richter, Matthias A1 - Mull, B. A1 - Schütze, A. A1 - Sauerwald, T. T1 - Comparison of ppb-level gas measurements with a metal-oxide semiconductor gas sensor in two independent laboratories JF - Sensors and Actuators B: Chemical N2 - In this work, we use a gas sensor system consisting of a commercially available gas sensor in temperature cycled operation. It is trained with an extensive gas profile for detection and quantification of hazardous volatile organic compounds (VOC) in the ppb range independent of a varying background of other, less harmful VOCs and inorganic interfering gases like humidity or hydrogen. This training was then validated using a different gas mixture generation apparatus at an independent lab providing analytical methods as reference. While the varying background impedes selective detection of benzene and naphthalene at the low concentrations supplied, both formaldehyde and total VOC can well be quantified, after calibration transfer, by models trained with data from one system and evaluated with data from the other system. The lowest achievable root mean squared errors of prediction were 49 ppb for formaldehyde (in a concentration range of 20–200 ppb) and 150 μg/m³ (in a concentration range of 25–450 μg/m³) for total VOC. The latter uncertainty improves to 13 μg/m³ with a more confined model range of 220–320 μg/m³. The data from the second lab indicate an interfering gas which cannot be detected analytically but strongly influences the sensor signal. This demonstrates the need to take into account all sensor relevant gases, like, e.g., hydrogen and carbon monoxide, in analytical reference measurements. KW - Indoor air quality KW - Volatile organic compounds KW - Calibration transfer KW - Selective quantification KW - Inter-lab comparison PY - 2018 DO - https://doi.org/10.1016/j.snb.2018.06.097 SN - 0925-4005 VL - 273 SP - 1037 EP - 1046 PB - Elsevier B.V. AN - OPUS4-45609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, V. A1 - Uhlemann, M. A1 - Richter, Silke A1 - Pfeifer, jens T1 - Calibration capacity of hot-pressed hydrogen standards for glow discharge optical emission and mass spectrometry JF - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - Mixed copper and titanium hydride powder was hot-pressed and characterized by Carrier Gas Hot Extraction, XRay Diffraction, Thermal Gravimetric Analysis coupled with Mass Spectrometry, and Scanning Electron Microscopy. The hot-pressed and five conventional samples were applied for calibration of hydrogen in Glow Discharge Optical Emission and Mass Spectrometry. Up to the introduction of 15 ng/s hydrogen the Emission yield model is useful in Glow Discharge Optical Emission Spectrometry. A correlation between saturation and even reversal of the emission yield of the spectral lines H121, H486 and H656 and low sputtering rates was found. Hydrogen effects exist for the spectral lines of Cu(II) 219 and Ti(I) 399. In Glow Discharge Mass Spectrometry, a linear dependency of the 1H ion current on the sputtered mass per time exists over the total range of hydrogen content investigated. Hydrogen effects also exist for the sensitivity of 48Ti and 63Cu. The sputtering rate of two-phase materials depends linearly on the sputtered mass per time of one phase, which allows the sputtering rate of two-phase materials with known composition to be predicted. KW - Hot-pressing KW - GD-OES KW - GD-MS KW - Calibration KW - Hydrogen KW - Titanium hydride KW - Sputtering KW - Two-phase system PY - 2021 DO - https://doi.org/10.1016/j.sab.2020.106039 VL - 176 SP - 106039 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-52074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Horn, Wolfgang A1 - Richter, Matthias A1 - Nohr, M. A1 - Wilke, Olaf A1 - Jann, Oliver T1 - Application of a novel reference material in an international round robin test on material emissions testing JF - Indoor Air N2 - Emission testing of products is currently a rapidly increasing field of measurement activity. Labelling procedures for construction products are based on such emission test chamber measurements and hence measurement performance should be verified. A suited procedure for this purpose is the testing of one unique homogenous material in different laboratories within a Round Robin Test (RRT). Therefore, it is useful to have a reference material which can be used within inter-laboratory studies or as part of the quality management system to ensure comparable results. Several approaches on the development of reproducibly emitting materials have been published. These have in common only to emit a single VOC – toluene. Two further research studies carried out by BAM aimed to develop reference material for emissions testing containing one or more VOC in a single material. The first approach was a doped lacquer with Volatile and Semi-Volatile Organic Compounds (VOC/SVOC) and the second was Thermoplastic Polyurethane (TPU) or a Squalane/Paraffin mixture. Results received with the lacquer based material were presented in more detail. KW - Emission test chamber KW - Reference material KW - Round robin test KW - VOC PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-419412 DO - https://doi.org/10.1111/ina.12421 SN - 1600-0668 SN - 0905-6947 VL - 28 IS - 1 SP - 181 EP - 187 PB - Wiley & Sons, Ltd. AN - OPUS4-41941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Janine A1 - Elordui-Zapatarietxe, S. A1 - Emteborg, H. A1 - Fettig, Ina A1 - Cabillic, J. A1 - Alasonati, E. A1 - Gantois, F. A1 - Swart, C. A1 - Gokcen, T. A1 - Tunc, M. A1 - Binici, B. A1 - Rodriguez-Cea, A. A1 - Zuliani, T. A1 - Gonzalez Gago, A. A1 - Pröfrock, D. A1 - Nousiainen, M. A1 - Sawal, G. A1 - Buzoianu, M. A1 - Philipp, Rosemarie T1 - An interlaboratory comparison on whole water samples JF - Accreditation and Quality Assurance N2 - The European Water Framework Directive 2000/60/EC requires monitoring of organic priority pollutants in so-called whole water samples, i.e. in aqueous nonfiltered samples that contain natural colloidal and suspended particulate matter. Colloids and suspended particles in the liquid phase constitute a challenge for sample homogeneity and stability. Within the joint research project ENV08 ‘‘Traceable measurements for monitoring critical pollutants under the European Water Framework Directive 2000/60/EC’’, whole water test materials were developed by spiking defined amounts of aqueous slurries of ultrafinely milled contaminated soil or sediment and aqueous solutions of humic acid into a natural mineral water matrix. This paper presents the results of an European-wide interlaboratory comparison (ILC) using this type of test materials. Target analytes were tributyltin, polybrominated diphenyl ethers and polycyclic aromatic hydrocarbons in the ng/L concentration range. Results of the ILC indicate that the produced materials are sufficiently homogeneous and stable to serve as samples for, e.g. proficiency testing or method validation. To our knowledge, this is the first time that ready-to-use water materials with a defined amount of suspended particulate and colloidal matter have been applied as test samples in an interlaboratory exercise. These samples meet the requirements of the European Water Framework Directive. Previous proficiency testing schemes mainly employed filtered water samples fortified with a spike of the target analyte in a water-miscible organic solvent. KW - Water Framework Directive KW - Wasserrahmenrichtlinie KW - Interlaboratory comparison KW - Ringversuch KW - Whole water sample KW - Gesamtwasserprobe PY - 2016 DO - https://doi.org/10.1007/s00769-015-1190-8 SN - 0949-1775 SN - 1432-0517 VL - 21 IS - 2 SP - 121 EP - 129 PB - Springer AN - OPUS4-35730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -