TY - JOUR A1 - Vogl, Jochen A1 - Kipphardt, Heinrich A1 - Richter, Silke A1 - Bremser, Wolfram A1 - Arvizu Torres, M. A1 - Lara Manzano, J. A1 - Buzoianu, M. A1 - Hill, S. A1 - Petrov, P. A1 - Goenaga-Infante, H. A1 - Sargent, M. A1 - Fisicaro, P. A1 - Labarraque, G. A1 - Zhou, T. A1 - Turk, G. C. A1 - Winchester, M. A1 - Miura, T. A1 - Methven, B. A1 - Sturgeon, R. A1 - Jährling, R. A1 - Rienitz, O. A1 - Mariassy, M. A1 - Hankova, Z. A1 - Sobina, E. A1 - Krylov, A. I. A1 - Kustikov, Y. A. A1 - Smirnov, V. V. T1 - Establishing comparability and compatibility in the purity assessment of high purity zinc as demonstrated by the CCQM-P149 intercomparison N2 - For the first time, an international comparison was conducted on the determination of the purity of a high purity element. Participants were free to choose any analytical approach appropriate for their institute’s applications and services. The material tested was a high purity zinc, which had earlier been assessed for homogeneity and previously used in CCQM-K72 for the determination of six defined metallic impurities. Either a direct metal assay of the Zn mass fraction was undertaken by EDTA titrimetry, or an indirect approach was used wherein all impurities, or at least the major ones, were determined and their sum subtracted from ideal purity of 100 %, or 1 kg/kg. Impurity assessment techniques included glow discharge mass spectrometry, inductively coupled plasma mass spectrometry and carrier gas hot extraction/combustion analysis. Up to 91 elemental impurities covering metals, non-metals and semi-metals/metalloids were quantified. Due to the lack of internal experience or experimental capabilities, some participants contracted external laboratories for specific analytical tasks, mainly for the analysis of non-metals. The reported purity, expressed as zinc mass fraction in the high purity zinc material, showed excellent agreement for all participants, with a relative standard deviation of 0.011 %. The calculated reference value, w(Zn) = 0.999 873 kg/kg, was assigned an asymmetric combined uncertainty of + 0.000025 kg/kg and – 0.000028 kg/kg. Comparability amongst participating metrology institutes is thus demonstrated for the purity determination of high purity metals which have no particular difficulties with their decomposition / dissolution process when solution-based analytical methods are used, or which do not have specific difficulties when direct analysis approaches are used. Nevertheless, further development is required in terms of uncertainty assessment, quantification of non-metals and the determination of purity of less pure elements and/or for those elements suffering difficulties with the decomposition process. KW - Purity assessment KW - Direct metal assay KW - Impurity assessment KW - Non-metal analysis KW - High-purity elements KW - SI-traceability PY - 2018 DO - https://doi.org/10.1088/1681-7575/aaa677 SN - 1681-7575 SN - 0026-1394 VL - 55 IS - 2 SP - 211 EP - 221 PB - Institute of Physics Publishing CY - Bristol AN - OPUS4-44257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Janine A1 - Elordui-Zapatarietxe, S. A1 - Emteborg, H. A1 - Fettig, Ina A1 - Cabillic, J. A1 - Alasonati, E. A1 - Gantois, F. A1 - Swart, C. A1 - Gokcen, T. A1 - Tunc, M. A1 - Binici, B. A1 - Rodriguez-Cea, A. A1 - Zuliani, T. A1 - Gonzalez Gago, A. A1 - Pröfrock, D. A1 - Nousiainen, M. A1 - Sawal, G. A1 - Buzoianu, M. A1 - Philipp, Rosemarie T1 - An interlaboratory comparison on whole water samples N2 - The European Water Framework Directive 2000/60/EC requires monitoring of organic priority pollutants in so-called whole water samples, i.e. in aqueous nonfiltered samples that contain natural colloidal and suspended particulate matter. Colloids and suspended particles in the liquid phase constitute a challenge for sample homogeneity and stability. Within the joint research project ENV08 ‘‘Traceable measurements for monitoring critical pollutants under the European Water Framework Directive 2000/60/EC’’, whole water test materials were developed by spiking defined amounts of aqueous slurries of ultrafinely milled contaminated soil or sediment and aqueous solutions of humic acid into a natural mineral water matrix. This paper presents the results of an European-wide interlaboratory comparison (ILC) using this type of test materials. Target analytes were tributyltin, polybrominated diphenyl ethers and polycyclic aromatic hydrocarbons in the ng/L concentration range. Results of the ILC indicate that the produced materials are sufficiently homogeneous and stable to serve as samples for, e.g. proficiency testing or method validation. To our knowledge, this is the first time that ready-to-use water materials with a defined amount of suspended particulate and colloidal matter have been applied as test samples in an interlaboratory exercise. These samples meet the requirements of the European Water Framework Directive. Previous proficiency testing schemes mainly employed filtered water samples fortified with a spike of the target analyte in a water-miscible organic solvent. KW - Water Framework Directive KW - Wasserrahmenrichtlinie KW - Interlaboratory comparison KW - Ringversuch KW - Whole water sample KW - Gesamtwasserprobe PY - 2016 DO - https://doi.org/10.1007/s00769-015-1190-8 SN - 0949-1775 SN - 1432-0517 VL - 21 IS - 2 SP - 121 EP - 129 PB - Springer AN - OPUS4-35730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, M. A1 - Trunschke, A. A1 - Bentrup, U. A1 - Brzezinka, Klaus-Werner A1 - Schreier, E. A1 - Schneider, M. A1 - Pohl, M.-M. A1 - Fricke, R. T1 - Selective Catalytic Reduction of Nitric Oxide by Ammonia over Egg-Shell MnOx/NaY Composite Catalysts N2 - A novel composite catalyst system for the selective catalytic reduction (SCR) of NOx by NH3 is described operating at temperatures lower than 470 K in the presence of water with NO conversions of 80–100% at space velocities of 30,000–50,000 h-1. The catalyst is prepared by egg-shell precipitation of MnO2 on the external surface of zeolite NaY. Structural and thermal stability of precipitated MnO2 as well as of the MnO2/NaY composite catalyst were characterized by N2 adsorption, X-ray diffraction, laser Raman spectroscopy, temperature-programmed reduction, and electron microscopy. MnO2 precipitated on zeolite NaY (15 wt% loading) retained its amorphous state up to calcination temperatures of 775 K. The zeolite component remained structurally intact. Calcination at higher temperatures destroyed the zeolite structure and transformed MnO2 into Mn3O4. DRIFT spectroscopic investigations revealed the presence of symmetric O=N—O—N=O species formally corresponding to N2O3 on the composite catalyst after contact with NO. Catalytic measurements under integral flow conditions showed that the catalyst performance is associated with a close coupling of nitrite formation and its drain off from equilibria with NO/NO2 and nitrate by ammonia. Several results are in line with the “diazotation” mechanism, including NH3 protonation to NH4+, whereas prevailing Lewis acid sites should enable NH3 activation via amide species, thus leading to a parallel “amide/nitrosamide” SCR reaction route. The activity-temperature profile fulfills the requirements of a low-temperature NOx reduction catalyst for mobile diesel engines if an ammonia supply is implemented “on board,” e.g., by urea decomposition. PY - 2002 DO - https://doi.org/10.1006/jcat.2001.3468 SN - 0021-9517 SN - 1090-2694 VL - 206 SP - 98 EP - 113 PB - Acad. Press CY - San Diego, Calif. AN - OPUS4-1638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alasonati, E. A1 - Fettig, I. A1 - Richter, Janine A1 - Philipp, Rosemarie A1 - Milačič, R. A1 - Sčančar, J. A1 - Zuliani, T. A1 - Tunç, M. A1 - Bilsel, M. A1 - Gören, A. A1 - Fisicaro, P. T1 - Towards tributyltin quantification in natural water at the Environmental Quality Standard level required by the Water Framework Directive N2 - The European Union (EU) has included tributyltin (TBT) and its compounds in the list of priority water pollutants. Quality standards demanded by the EU Water Framework Directive (WFD) require determination of TBT at so low concentration level that chemical analysis is still difficult and further research is needed to improve the sensitivity, the accuracy and the precision of existing methodologies. Within the frame of a joint research project “Traceable measurements for monitoring critical pollutants under the European Water Framework Directive” in the European Metrology Research Programme (EMRP), four metrological and designated institutes have developed a primary method to quantify TBT in natural water using liquid–liquid extraction (LLE) and species-specific isotope dilution mass spectrometry (SSIDMS). The procedure has been validated at the Environmental Quality Standard (EQS) level (0.2 ng L−1 as cation) and at the WFD-required limit of quantification (LOQ) (0.06 ng L−1 as cation). The LOQ of the methodology was 0.06 ng L−1 and the average measurement uncertainty at the LOQ was 36%, which agreed with WFD requirements. The analytical difficulties of the method, namely the presence of TBT in blanks and the sources of measurement uncertainties, as well as the interlaboratory comparison results are discussed in detail. KW - Tributyltin KW - Water Framework Directive KW - Metrological traceability KW - ICP-MS KW - Isotope dilution PY - 2016 DO - https://doi.org/10.1016/j.talanta.2016.07.056 SN - 0039-9140 SN - 1873-3573 VL - 160 SP - 499 EP - 511 PB - Elsevier B.V. AN - OPUS4-37407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, M. A1 - Fenker, M. A1 - Kappl, H. A1 - Müller, Thoralf A1 - Heyn, A. A1 - Heiss, A. A1 - Richter, A. T1 - Corrosion protection of steel substrates by magnetron sputtered TiMgN hard coatings: Structure, mechanical properties and growth defect related salt spray test results N2 - Hard and wear resistant coatings deposited by PVD techniques have been characterized for decades for their capabilities to protect steel substrates from corrosion. In the present work the effect of Mg incorporated into TiN coatings is described in terms of the corrosion behavior as well as the mechanical and structural properties. TiN and TiMgN films with Mg contents between 10 and 35 at.% were deposited onto mirror polished 100Cr6 (1.3505) steel samples with 2.5 and 5 μm thickness by using DC magnetron sputtering. The corrosion protection capabilities of the coatings were characterized by neutral salt spray (NSS) test, considering the amounts and sizes of growth defects inherent in each coated sample as determined by a recently developed optical scan method (Large Area High Resolution mapping). The defect data were statistically analyzed for improved interpretation of NSS test results. Chosen growth defects were additionally analyzed by focused ion beam technique. Furthermore the coating composition and morphology, the hardness and the tribological behavior were characterized. Polished steel samples coated with 2.5 μm TiMgN containing about 35 at.% Mg were in the plane free of corrosion after 24 h in a NSS test. TiMgN with 10 or 20 at.% Mg only provided a slightly improved corrosion protection in relation to pure TiN coatings, which was limited to certain types of growth defects. The highest Mg containing coatings exhibited a decreased hardness down to 1200 or 1800 HV depending on type of deposition (HV 1200: Ti- and Mg-target with rotating substrate holder, 1800: Mg-plugged Ti-target with static substrate holder), but also showed a strongly improved wear resistance against Al2O3 related to pure TiN. By analyzing the NSS test results it was found that the corrosion behavior of the coated samples did not only depend strongly on the Mg content, but also on the sample individual defect concentrations. Therefore this subject is extensively discussed. KW - Physical vapour deposition (PVD) KW - Corrosion KW - Growth defects KW - Pinholes KW - Magnesium KW - TiMgN PY - 2018 DO - https://doi.org/10.1016/j.surfcoat.2018.05.037 SN - 0257-8972 VL - 349 IS - 9 SP - 82 EP - 92 PB - Elsevier B.V. AN - OPUS4-45712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, S. A1 - Timmel, S. A1 - Richter, S. A1 - Werner, M. A1 - Gläser, M. A1 - Swatek, S. A1 - Braun, Ulrike A1 - Hagendorf, C. T1 - Silver nanoparticles cause snail trails in photovoltaic modules N2 - After some months of operation, a number of PV modules develop a discolouration defect called 'snail trails', or 'snail traces', which appear as irregular dark stripes across the cells. Whereas these traces were soon identified as discoloured silver contacts along the cell edges or at micro cracks, the chemical and mechanistic reasons for this phenomenon have not yet been resolved in detail. In this work we show that silver nanoparticles accumulating within the encapsulation foil cause the brownish discolouration, and that certain additives of encapsulation and back sheet foils trigger the formation of these nanoparticles. KW - Snail trails KW - Cell cracks KW - Encapsulation foil KW - Ag contact finger KW - Nanoparticles PY - 2014 DO - https://doi.org/10.1016/j.solmat.2013.11.013 SN - 0927-0248 VL - 121 SP - 171 EP - 175 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-30059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musyanovych, A. A1 - Grimmer, Christoph A1 - Sadak, A. E. A1 - Heßling, L. A1 - Lüdicke, M. A1 - Bilsel, M. A1 - Horn, Wolfgang A1 - Richter, Matthias T1 - Polymer Capsules with Volatile Organic Compounds as Reference Materials for Controlled Emission N2 - Encapsulation of volatile organic compounds (VOCs) that could evaporate at a defined rate is of immense interest for application in emission reference materials (ERMs). Polyurethane/polyurea microcapsules with various VOC active ingredients (limonene, pinene, and toluene) were successfully produced by interfacial polymerization with Shirasu porous glass membrane emulsification in a size range between 10 and 50 μm. The effect of surfactant, VOC, monomer(s) type, and ratio has a great effect on the formulation process and morphology of capsules. The type of VOC played a significant role in the encapsulation efficiency. Due to the difference in vapor pressure and VOC/water interfacial tension, the formulation for encapsulation was optimized for each individual VOC. Furthermore, to achieve effective stability of the large droplets/capsules, a combination of ionic and nonionic surfactants was used. Optical and scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), were used to characterize the optimized microcapsules. The results showed that the obtained microcapsules exhibited a spherical shape and core–shell morphology and featured characteristic urethane-urea bonds. The amount of encapsulated VOC ranges between 54 and 7 wt %. The emission tests were performed with the help of the emission test chamber procedure (EN 16516). The limonene-loaded polyurethane/polyurea microcapsules show a change in emission rate of less than 10% within 14 days and can be considered as a potential candidate for use as an ERM. KW - Polymer microcapsules KW - Membrane emulsification KW - Polyaddition KW - Volatile organic compound (VOC) KW - Emission testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-619227 DO - https://doi.org/10.1021/acsami.4c12826 SN - 1944-8252 VL - 16 IS - 50 SP - 69999 EP - 70009 PB - ACS AN - OPUS4-61922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mushtaq, S. A1 - Steers, E.B.M. A1 - Barnhart, D. A1 - Churchill, G. A1 - Kasik, M. A1 - Richter, Silke A1 - Pfeifer, Jens A1 - Putyera, K. T1 - The production of doubly charged sample ions by “charge transfer and ionization” (CTI) in analytical GD-MS N2 - Normally, in analytical GD-MS, the doubly charged metallic ion signals from the sample are several orders of magnitude less than the corresponding singly charged signals. However, we have observed that using a neon plasma, the M++ signals of some elements, which have double ionization energies close to the first ionization energy of neon, are of the same order as the M+ signal. Doubly charged ions may be produced directly in the discharge cell by electron ionization (EI), and also by two electron Penning ionization (TEP), but these processes cannot explain the above effect. In this paper, we suggest that an additional process named as ‘Charge Transfer and Ionization’ (CTI) produces such ions either in their ionic ground state or in an excited state. To confirm that this process is typical of the discharges used in GD-MS and not an artefact of any particular form of cell and ion extraction system, we have carried out comprehensive experimental measurements using three different GD-MS instruments, viz., Nu Astrum, VG9000 and ELEMENT GD and our results provide clear evidence for CTI. This is the first time the process has been identified as an ionization process in analytical GD-MS. CTI must be differentiated from Asymmetric Charge Transfer (ACT), which is a “selective” process and requires a close energy match (e.g. ΔE < 0.5 eV for a strong effect). On the other hand, CTI is “non-selective” in the sense that a close energy match is not required (e.g. a strong effect is observed with ΔE ∼ 2 eV), although the process only occurs for a limited number of elements, depending on the plasma gas used and the total energy required to doubly ionize the metallic atom. KW - Titanium KW - Glow discharge processes KW - Doubly charged ions KW - The charge transfer and ionization process (CTI) KW - Krypton KW - Neon PY - 2017 DO - https://doi.org/10.1039/C6JA00415F SN - 0267-9477 SN - 1364-5544 VL - 32 IS - 9 SP - 1721 EP - 1729 PB - Royal Society of Chemistry AN - OPUS4-41108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, M.D. A1 - Becker-Ross, H. A1 - Okruss, M. A1 - Geisler, S. A1 - Florek, S. A1 - Richter, Silke A1 - Meckelburg, Angela T1 - Direct determination of fluorine in niobium oxide using slurry sampling electrothermal high-resolution continuum source molecular absorption spectrometry N2 - Aiming for a round-robin test, a new method for the direct determination of fluorine in niobium oxide has been developed. It is based on the use of high-resolution molecular absorption spectra of calcium mono-fluoride (CaF) generated in the graphite tube, combined with the slurry sampling technique. The absorption measurement was performed at the 606.44 nm CaF rotational line. By using graphite tubes with zirconium carbide (ZrC) modified platform, the molecular absorption sensitivity of CaF has been improved by a factor of 20, and no additional chemical modifier was necessary. Generally, non-spectral interferences were observed in the presence of HCl, H2SO4, and H3PO4. For HCl, additional spectral interference occurred due to an overlap of the absorption spectra of CaF and CaCl. However, due to the absence of these mentioned substances in the current material, such interferences do not exist for this application. The characteristic mass found for the CaF 606.44 nm line was 0.1 ng; the limit of detection was 5 mg fluorine per kg solid sample (3σ criterion). The results obtained by the method were within the range of certified values. Comparing to the classical method such as the pyrohydrolysis-photometric method, the developed new method showed clear advantages regarding sensitivity and specificity. The time requirement for one sample analysis was strongly shortened from several hours to only some minutes. KW - Continuum source molecular absorption spectrometry KW - Fluorine determination KW - Niobium oxide KW - Slurry sampling PY - 2014 DO - https://doi.org/10.1016/j.sab.2014.02.005 SN - 0584-8547 SN - 0038-6987 VL - 94-95 SP - 34 EP - 38 PB - Elsevier CY - Amsterdam AN - OPUS4-30655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Anja A1 - Possling, A. A1 - Malysheva, N. A1 - Yousef, K. P. A1 - Herbst, S. A1 - von Kleist, M. A1 - Hengge, R. T1 - Local c-di-GMP signaling in the control of synthesis of the E. coli biofilm exopolysaccharide pEtN-cellulose N2 - In many bacteria, the biofilm-promoting second messenger c-di-GMP is produced and degraded by multiple diguanylate cyclases (DGC) and phosphodiesterases (PDE), respectively. High target specificity of some of these enzymes has led to theoretical concepts of "local" c-di-GMP signaling. In Escherichia coli K-12, which has 12 DGCs and 13 PDEs, a single DGC, DgcC, is specifically required for the biosynthesis of the biofilm exopolysaccharide pEtN-cellulose without affecting the cellular c-di-GMP pool, but the mechanistic basis of this target specificity has remained obscure. DGC activity of membrane-associated DgcC, which is demonstrated in vitro in nanodiscs, is shown to be necessary and sufficient to specifically activate cellulose biosynthesis in vivo. DgcC and a particular PDE, PdeK (encoded right next to the cellulose operon), directly interact with cellulose synthase subunit BcsB and with each other, thus establishing physical proximity between cellulose synthase and a local source and sink of c-di-GMP. This arrangement provides a localized, yet open source of c-di-GMP right next to cellulose synthase subunit BcsA, which needs allosteric activation by c-di-GMP. Through mathematical modeling and simulation, we demonstrate that BcsA binding from the low cytosolic c-di-GMP pool in E. coli is negligible, whereas a single c-di-GMP molecule that is produced and released in direct proximity to cellulose synthase increases the probability of c-di-GMP binding to BcsA several hundred-fold. This local c-di-GMP signaling could provide a blueprint for target-specific second messenger signaling also in other bacteria where multiple second messenger producing and degrading enzymes exist. KW - Biofilm KW - Cellulose synthase KW - Bacterial second messenger KW - C-di-GMP PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511214 DO - https://doi.org/10.1016/j.jmb.2020.06.006 SN - 0022-2836 VL - 432 IS - 16 SP - 4576 EP - 4595 PB - Elsevir Ltd. AN - OPUS4-51121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -