TY - CONF A1 - Rauwolf, M. A1 - Turyanskaya, A. A1 - Roschger, A. A1 - Prost, J. A1 - Simon, R. A1 - Pape, I. A1 - Radtke, Martin A1 - Scharf, O. A1 - Schoonjans, Tom A1 - de Oliveira Guilherme Buzanich, Ana A1 - Sawhney, K. A1 - Wobrauschek, P. A1 - Rocshger, P. A1 - Hofstaetter, J. G. A1 - Streli, C. T1 - Zinc distribution in human bone: Sr-micro X-ray fluorescence imaging of osteoporotic samples N2 - Zn is known to be located in the reactive centers of various enzymes, which play a major role in the mineralization process at sites where new bone formation occurs. In addition, elevated Zn levels are supposed to increase the proliferation rate of osteoblasts [1] and may lead to a stimulation of bone formation in vitro and in vivo [2]. Consequently, Zn seems to play an essential role in bone formation and mineralization through various pathways. We thus expected Zn levels to be altered at sites of extensive bone formation like in the case of fracture healing. We measured the same areas on human bone samples with both a scanning confocal synchrotron radiation induced micro X-ray fluorescence (SR-μXRF) at the FLUO beamline (ANKA) and a full-field Color X-ray Camera at the BAMline (Bessy II) setup in order to find the ideal SR-μXRF imaging method to investigate trace element distributions in bone samples. As zinc is a trace element of special interest in bone, the setups were optimized for Zn detection. The setups were compared concerning count rate, required measurement time and resolution. We could show that the ideal method is depending on the element of interest. While for Ca (a major constituent of the bone with a low energy of 3.69keV for K) the Color X-ray Camera provided us with a higher resolution in the plane, for Zn (a trace element in bone) only the confocal SR-μXRF was able to sufficiently image the distribution. Biopsies of healing osteoporotic fractures (Vertebral compression fractures (VCFs)) were investigated in regard to their Zn distribution. The samples were measured with a confocal SR-μXRF setup with a 10 μm x 15 μm resolution at the FLUO beamline at ANKA. As we found increased Zn levels, which seemed to be accumulated in narrow structures between bone packages we also investigated thin cuts (4 μm thick) of two sample areas with a higher resolution of 1 μm x 1 μm (monochromatic beam with E= 17 keV) at B16 at Diamond SR facility. We will present the advantages and disadvantages of all three SR-μXRF setups (ANKA FLUO beamline, Bessy II BAMline, and Diamond B16) for imaging elemental distributions in bone with a focus on Zn. We will also show the distribution of Zn in healing VCFs. T2 - XRM2016: 13th International Conference on X-Ray Microscopy CY - Oxford, UK DA - 15.08.2016 KW - Synchrotron KW - BAMline KW - XRF PY - 2016 AN - OPUS4-38765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rauwolf, M. A1 - Turyanskaya, A. A1 - Roschger, A. A1 - Prost, J. A1 - Simon, R. A1 - Scharf, O. A1 - Radtke, Martin A1 - Schoonjans, Tom A1 - de Oliveira Guilherme Buzanich, Ana A1 - Klaushofer, K. A1 - Wobrauschek, P. A1 - Hofstaetter, J. G. A1 - Roschger, P. A1 - Streli, C. T1 - Synchrotron radiation micro X-ray fluorescence spectroscopy of thin structures in bone samples: comparison of confocal and color X-ray camera setups N2 - In the quest for finding the ideal synchrotron-radiation-induced imaging method for the investigation of trace element distributions in human bone samples, experiments were performed using both a scanning confocal synchrotron radiation micro X-ray fluorescence (SR-mXRF) (FLUO beamline at ANKA) setup and a full-field color X-ray camera (BAMline at BESSY-II) setup. As zinc is a trace element of special interest in bone, the setups were optimized for its detection. The setups were compared with respect to count rate, required measurement time and spatial resolution. It was demonstrated that the ideal method depends on the element of interest. Although for Ca (a major constituent of the bone with a low energy of 3.69 keV for its K alpha XRF line) the color X-ray camera provided a higher resolution in the plane, for Zn (a trace element in bone) only the confocal SR-µXRF setup was able to sufficiently image the distribution. KW - Synchrotron KW - BAMline KW - BESSY KW - XRF KW - X-ray Color Camera PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-391944 SN - 1600-5775 VL - 24 SP - 307 EP - 311 PB - International Union of Crystallography AN - OPUS4-39194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -