TY - JOUR A1 - Dutto, Paola A1 - Stickle, M. M. A1 - Pastor, M. A1 - Manzanal, D. A1 - Yague, A. A1 - Tayyebi, S. A1 - Lin, C. A1 - Elizalde, M. D. ED - Cervera, Miguel T1 - Modelling of fluidised geomaterials: the case of the Aberfan and the Gypsum tailings impoundment flowslides JF - Materials N2 - The choice of a pure cohesive or a pure frictional viscoplastic model to represent the rheological behaviour of a flowslide is of paramount importance in order to obtain accurate results for real cases. The principal Goal of the present work is to clarify the influence of the type of viscous model—pure cohesive versus pure frictional—with the numerical reproduction of two different real flowslides that occurred in 1966: the Aberfan flowslide and the Gypsum tailings impoundment flowslide. In the present work, a depth-integrated model based on the v-pw Biot–Zienkiewicz formulation, enhanced with a diffusion-like equation to account for the pore pressure Evolution within the soil mass, is applied to both 1966 cases. For the Aberfan flowslide, a frictional viscous model based on Perzyna viscoplasticity is considered, while a pure cohesive viscous model (Bingham model) is considered for the case of the Gypsum flowslide. The numerical approach followed is the SPH method, which has been enriched by adding a 1D finite difference grid to each SPH node in order to improve the description of the pore water evolution in the propagating mixture. The results obtained by the performed simulations are in agreement with the documentation obtained through the UK National Archive (Aberfan flowslide) and the International Commission of large Dams (Gypsum flowslide). KW - Aberfan flowslide KW - SPH KW - Landslide propagation modelling KW - Perzyna viscoplasticity PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-410493 DO - https://doi.org/10.3390/ma10050562 SN - 1996-1944 VL - 10 IS - 5 SP - 562, 1 EP - 562, 21 AN - OPUS4-41049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dutto, Paola A1 - Stickle, M.M. A1 - Manzanal, D. A1 - Hernán, A.Y. A1 - Pastor, M. ED - Onate, E. ED - Owen, D.R.J. ED - Peric, D. ED - Chiumenti, M. T1 - Modelling of propagation with SPH of 1966 Aberfan flowslide: special attention to the role of rheology and pore water pressure T2 - COMPLAS XIII - 13th International conference on computational plasticity - Fundamentals and applications N2 - Landslides can cause major economic damage and a large number of casualities as it is possible to see from past events occurred all over the world. Being able to predict these kind of hazards would then suppose the achievement of great benefits. Here a model that combines a depth integrated description of the soil-pore fluid mixture together with a set of 1D models dealing with pore pressure evolution within the soil mass is presented. The mathematical model is based on the Biot-Zienkiewicz equations, from where a depth averaged model is derived. Concerning the material behaviour, the approach used is the one suggested by the Perzyna viscoplasticity, which has been extensively used in the past to model solid behaviour prior to failure. In this framework, a simple shear rheological model is derived, providing the basal friction needed in depth integrated models. The Smoothed Particle Hydrodynamics (SPH) has been the numerical technique chosen to spatially discretised the depth integrated equations of the mathematical model. The purpose of this work is to apply the SPH depth integrated numerical model, together with the sub-model that predicts the evolution of the pore water pressure inside the landslide, to simulate the propagation phase of the Aberfan flowslide occurred in 1966. T2 - COMPLAS XIII - 13th International conference on computational plasticity - Fundamentals and applications CY - Barcelona, Spain DA - 01.09.2015 KW - Numerical modelling KW - Smoothed particle hydrodynamics KW - SPH KW - Fluidised geomaterials KW - Aberfan flowslide PY - 2015 UR - http://congress.cimne.com/complas2015/frontal/doc/EbookComplas2015.pdf SN - 978-84-944244-6-5 SP - 151 EP - 161 AN - OPUS4-34290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cuéllar, Pablo A1 - Mira, P. A1 - Pastor, M. A1 - Merodo, J.A.F. A1 - Baeßler, Matthias A1 - Rücker, Werner T1 - A numerical model for the transient analysis of offshore foundations under cyclic loading JF - Computers and geotechnics N2 - A comprehensive numerical model for the analysis of offshore foundations under a general transient loading is presented here. The theoretical basis of the model lies on the Swansea formulation of Biot's equations of dynamic poroelasticity combined with a constitutive model that reproduces key aspects of cyclic soil behaviour in the frame of the theory of generalised plasticity. On the practical side, the adoption of appropriate finite element formulations may prevent the appearance of spurious numerical instabilities of the pore pressure field. In this respect, the use of a coupled enhanced-strain element is here proposed. On the other hand, the practicality of the presented model depends ultimately on its computational efficiency. Some practical recommendations concerning the solution strategies, the matrix storage/handling procedures and the parallel multi-processor computation are here provided. Finally, the performance of the model with a benchmark study case and its practical application to analyse the soil–structure interaction of an offshore monopile under a realistic transient storm loading are discussed. KW - Offshore foundations KW - Cyclic loading KW - Numerical model KW - Pore pressure accumulation KW - Liquefaction analysis PY - 2014 DO - https://doi.org/10.1016/j.compgeo.2014.02.005 SN - 0266-352x VL - 59 SP - 75 EP - 86 PB - Elsevier Ltd. CY - Barking AN - OPUS4-30490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Cuéllar, Pablo A1 - Pastor, M. A1 - Mira, P. A1 - Fernández-Merodo, J.A. A1 - Baeßler, Matthias A1 - Rücker, Werner ED - Benz, T. ED - Nordal, S. T1 - Numerical investigations for the pile foundation of an offshore wind turbine under transient lateral load T2 - Numerical methods in geotechnical engineering (NUMGE 2010) N2 - Numerical analysis can be useful for the investigation of important aspects of offshore foundation prototypes that otherwise could hardly be studied experimentally, like the evolution of pore-water pressure around the monopile foundation of an offshore wind turbine under extreme loading. A combination of mixed pressuredisplacement formulations along with a constitutive model for sands based on the Generalized Plasticity Theory can replicate accurately the soil behaviour in saturated conditions. However, additional issues must be taken into account in order to perform numerical simulations of offshore piles. Some implications of the Babuska-Brezzi restriction, as well as considerations about the pile-soil interface and suitable solution strategies are discussed here. Due to the high cost of the transient analysis, the parallel computation offers a promising perspective, but can be complex and needs to be implemented carefully in order to avoid a performance deterioration. A brief overview on current trends and functional software is given here. T2 - 7th European conference on numerical methods in geotechnical engineering (NUMGE 2010) CY - Trondheim, Norway DA - 2010-06-02 KW - Offshore pile foundation KW - Cyclic lateral load KW - Pore pressure accumulation PY - 2010 SN - 978-0-415-59239-0 SP - 913 EP - 919 PB - Taylor & Francis AN - OPUS4-21572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -