TY - JOUR A1 - Wiedensohler, A. A1 - Wiesner, A. A1 - Weinhold, K. A1 - Birmili, W. A1 - Herrmann, M. A1 - Merkel, M. A1 - Müller, T. A1 - Pfeifer, S. A1 - Schmidt, A. A1 - Tuch, T. A1 - Velarde, F. A1 - Quincey, P. A1 - Seeger, Stefan A1 - Nowak, A. T1 - Mobility particle size spectrometers: Calibration procedures and measurement uncertainties N2 - Mobility particle size spectrometers (MPSS) belong to the essential instruments in aerosol science that determine the particle number size distribution (PNSD)in the submicrometer size range. Following calibration procedures and target uncertainties against standards and reference instruments are suggested for a complete MPSS quality assurance program: a) calibration of the CPC counting efficiency curve (within 5% for the plateau counting efficiency; within 1 nm for the 50% detection efficiency diameter), b) sizing calibration of the MPSS, using a certified polystyrene latex (PSL) particle size standard at 203 nm (within 3%), c) intercomparison of the PNSD of the MPSS (within 10% and 20% of the dN/dlogDP concentration for the particle size range 20 – 200 nm and 200 to 800 nm, respectively), and d) intercomparison of the integral PNC of the MPSS (within 10%). Furthermore, following measurement uncertainties have been investigated: a) PSL particle size standards in the range from 100-500nm match within 1% after sizing calibration at 203 nm. b) Bipolar diffusion chargers based on the radioactive nuclides Kr85, Am241 and Ni63 and a new ionizer based on corona discharge follow the recommended bipolar charge distribution, while soft X-ray-based charges may alter faster than expected. c) The use of a positive high voltage supply show a 10% better performance than a negative one. d) The intercomparison of the integral PNC of an MPSS against the total number concentration is still within the target uncertainty at an ambient pressure of approximately 500 hPa. KW - Measurement uncertainties KW - Mobility particle size spectrometer (MPPS) KW - Condensation particle counter (CPC) KW - Calibration PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-425060 DO - https://doi.org/10.1080/02786826.2017.1387229 SN - 1521-7388 VL - 52 IS - 2 SP - 146 EP - 164 PB - Tailor & Francis CY - USA AN - OPUS4-42506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andrae, K. A1 - Merkel, Stefan A1 - Durmaz, V. A1 - Fackeldey, K. A1 - Köppen, Robert A1 - Weber, M. A1 - Koch, Matthias T1 - Investigation of the ergopeptide epimerization process N2 - Ergopeptides, like ergocornine and a-ergocryptine, exist in an S- and in an R-configuration. Kinetic experiments imply that certain configurations are preferred depending on the solvent. The experimental methods are explained in this article. Furthermore, computational methods are used to understand this configurational preference. Standard quantum chemical methods can predict the favored configurations by using minimum energy calculations on the potential energy landscape. However, the explicit role of the solvent is not revealed by this type of methods. In order to better understand its influence, classical mechanical molecular simulations are applied. It appears from our research that 'folding' the ergopeptide molecules into an intermediate state (between the S- and the R-configuration) is mechanically hindered for the preferred configurations. KW - Ergopeptide KW - Epimerization KW - Hybrid monte carlo KW - Molecular dynamics KW - Conformation KW - Quantum mechanics PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-324632 DO - https://doi.org/10.3390/computation2030102 SN - 2079-3197 VL - 2 IS - 3 SP - 102 EP - 111 PB - MDPI CY - Basel AN - OPUS4-32463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -