TY - JOUR A1 - Philipp, Rosemarie A1 - Lalere, B. A1 - Gantois, F. A1 - Sánchez, C. A1 - Sáez, A. A1 - Bebić, J. A1 - Banjanac, K. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Claramunt, A. V. A1 - Janko, P. A1 - Jotanovic, A. A1 - Hafner-Vuk, K. A1 - Buzoianu, M. A1 - Mihail, R. A1 - Fernández, M. M. A1 - Etcheverry, J. A1 - Mbithi Muendo, B. A1 - Muriira Karau, G. A1 - Silva, A. A1 - Almirón, F. A1 - Marajh, D. A1 - Makgatho, P. A1 - Visser, R. A1 - Alaskar, A. R. A1 - Alosaimi, A. A1 - Alrashed, M. A1 - Yılmaz, H. A1 - Ün, İ. A1 - Gündüz, S. A1 - Topal, K. A1 - Bilsel, M. A1 - Karasinski, J. A1 - Torres, J. T1 - Supplementary comparison study - measurement capabilities for the quantification of ethanol in water JF - Metrologia N2 - The accurate quantification of ethanol in water is essential for forensic applications such as blood and breath alcohol testing and for commercial applications such as the assessment of alcoholic beverages. The intercomparison EURAMET.QM-S14 is part of a capacity building project named ALCOREF “Certified forensic alcohol reference materials” that is running within the European Metrology Programme for Innovation and Research (EMPIR). The intercomparison should allow project partners and other interested National Metrology Institutes (NMIs) and Designated Institutes (DIs) to benchmark their analytical methods for the quantification of ethanol in water. The study plan was agreed by the European Association of National Metrology Institutes (EURAMET) Subcommittee Bio- and Organic Analysis (SCBOA) and the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) in February and April 2019, respectively. The intercomparison was coordinated by BAM. Two concentration levels relevant for the calibration and verification of evidential breath alcohol analysers were distributed to study participants. Fifteen institutes from 15 countries registered for the intercomparison and returned results. Participants mostly applied gas chromatography with flame ionisation detection (GC-FID) or mass spectroscopy (GC-MS), one participant used titrimetry and one participant employed a test bench for breath analyser calibration (“bubble train”). Participants did either in-house purity assessment of their commercial ethanol calibrants by Karl-Fischer titration, chromatographic methods, quantitative nuclear magnetic resonance spectroscopy (qNMR) and/or density measurements; or they used ethanol/water Certified Reference Materials (CRMs) from NMIs/DIs for calibration. CCQM OAWG agreed to use a consensus value from participants results that utilizes the reported uncertainties as Key Comparison Reference Value (KCRV). The Gaussian Random effects model with Hierarchical Bayesian solution (HB-REM) is a reasonable approach in this case. The KCRVs and Degrees of Equivalence (DoEs) were calculated with the NIST consensus builder version 1.2 Hierarchical Bayes procedure. Successful participation in the interlaboratory comparison has demonstrated the capabilities in determining the mass fraction of ethanol in aqueous matrices in the range 0.1 mg/g to 8 mg/g. Fourteen out of 15 participants have successfully quantified both samples, one participant successfully quantified only the lower-level (0.6 mg/g) sample. KW - Certified reference material KW - EURAMET KW - EMPIR KW - ALCOREF KW - Ethanol in water KW - Supplementary comparison PY - 2022 DO - https://doi.org/10.1088/0026-1394/59/1A/08015 VL - 59 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-55889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Philipp, Rosemarie A1 - Schantz, M. A1 - Urquiza, M.P. A1 - Calderón, M.A.A. A1 - Torres, M.M. A1 - Carter, D. A1 - O'Connor, G. A1 - Sejeroe-Olsen, B. A1 - Ricci, M. A1 - Lalere, B. A1 - Peignaux, M. A1 - Kim, D.-H. A1 - Itoh, N. A1 - Wong, S.-K. A1 - Man, T.O. A1 - Caixeiro, J.M.R. T1 - CCQM-K50: Polycyclic aromatic hydrocarbons (PAHs) in soil/particulate matter JF - Metrologia PY - 2010 DO - https://doi.org/10.1088/0026-1394/47/1A/08006 SN - 0026-1394 SN - 1681-7575 VL - 47 SP - 08006-1 - 08006-47 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-20821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ricci, M. A1 - Shegunova, P. A1 - Conneely, P. A1 - Becker, Roland A1 - Torres, M. M. A1 - Osuna, M. A. A1 - On, T.P. A1 - Man, L.H. A1 - Baek, S.-Y. A1 - Kim, B. A1 - Hopley, C. A1 - Liscio, C. A1 - Warren, J. A1 - Le Diouron, V. A1 - Lardy-Fontan, S. A1 - Lalere, B. A1 - Mingwu, S. A1 - Kucklick, J. A1 - Vamathevan, V. A1 - Matsuyama, S. A1 - Numata, M. A1 - Brits, M. A1 - Quinn, L. A1 - Fernandes-Whaley, M. A1 - Gören, A.C. A1 - Binici, B. A1 - Konopelko, L. A1 - Krylov, A. A1 - Mikheeva, A. T1 - CCQM-K102: Polybrominated diphenyl ethers in sediment JF - Metrologia N2 - The key comparison CCQM-K102: Polybrominated diphenyl ethers in sediment was coordinated by the JRC, Directorate F - Health, Consumers & Reference Materials, Geel (Belgium) under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM). Thirteen National Metrology institutes or Designated Institutes and the JRC participated. Participants were requested to report the mass fraction (on a dry mass basis) of BDE 47, 99 and 153 in the freshwater sediment study material. The sediment originated from a river in Belgium and contained PBDEs (and other pollutants) at levels commonly found in environmental samples. The comparison was designed to demonstrate participants' capability of analysing non-polar organic molecules in abiotic dried matrices (approximate range of molecular weights: 100 to 800 g/mol, polarity corresponding to pKow < −2, range of mass fraction: 1–1000 μg/kg). All participants (except one using ultrasonic extraction) applied Pressurised Liquid Extraction or Soxhlet, while the instrumental analysis was performed with GC-MS/MS, GC-MS or GC-HRMS. Isotope Dilution Mass Spectrometry approach was used for quantification (except in one case). The assigned Key Comparison Reference Values (KCRVs) were the medians of thirteen results for BDE 47 and eleven results for BDE 99 and 153, respectively. BDE 47 was assigned a KCRV of 15.60 μg/kg with a combined standard uncertainty of 0.41 μg/kg, BDE 99 was assigned a KCRV of 33.69 μg/kg with a combined standard uncertainty of 0.81 μg/kg and BDE 153 was assigned a KCRV of 6.28 μg/kg with a combined standard uncertainty of 0.28 μg/kg. The k-factor for the estimation of the expanded uncertainty of the KCRVs was chosen as k = 2. KW - Intercomparison KW - Traceability KW - Nation metrology institutes PY - 2017 DO - https://doi.org/10.1088/0026-1394/54/1A/08026 SN - 0026-1394 SN - 1681-7575 VL - 54 SP - 08026, 1 EP - 82 AN - OPUS4-41998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -