TY - JOUR A1 - Hachmöller, O. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Aichler, M. A1 - Radtke, Martin A1 - Dietrich, D. A1 - Schwamborn, K. A1 - Lutz, L. A1 - Werner, M. A1 - Sperling, M. A1 - Walch, A. A1 - Karst, U. T1 - Elemental bioimaging and speciation analysis for the investigation of Wilsons disease using μXRF and XANES N2 - A liver biopsy specimen from a Wilson’s disease (WD) patient was analyzed by means of micro-X-ray fluorescence (mXRF) spectroscopy to determine the elemental distribution. First, bench-top mXRF was utilized for a coarse scan of the sample under laboratory conditions. The resulting distribution maps of copper and iron enabled the determination of a region of interest (ROI) for further analysis. In order to obtain more detailed elemental information, this ROI was analyzed by synchrotron radiation (SR)-based mXRF with a beam size of 4 mm offering a resolution at the cellular level. Distribution maps of additional elements to copper and iron like zinc and manganese were obtained due to a higher sensitivity of SR-mXRF. In addition to this, X-ray absorption near edge structure spectroscopy (XANES) was performed to identify the oxidation states of copper in WD. This speciation analysis indicated a mixture of copper(I) and copper(II) within the WD liver tissue. KW - progressive hepatolenticular degeneration KW - mXRF Micro-X-ray fluorescence spectroscopy KW - XANES X-ray absorption near edge structure spectroscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-360811 DO - https://doi.org/10.1039/C6MT00001K SN - 1756-5901 SN - 1756-591X PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-36081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tamschick, S. A1 - Rozenblut-Kościsty, B. A1 - Ogielska, M. A1 - Lehmann, Andreas A1 - Lymberakis, P. A1 - Hoffmann, F. A1 - Lutz, I. A1 - Kloas, W. A1 - Stöck, M. T1 - Sex reversal assessments reveal different vulnerability to endocrine disruption between deeply diverged anuran lineages N2 - Multiple anthropogenic stressors cause worldwide amphibian declines. Among several poorly investigated causes is global pollution of aquatic ecosystems with endocrine disrupting compounds (EDCs). These substances interfere with the endocrine system and can affect the sexual development of vertebrates including amphibians. We test the susceptibility to an environmentally relevant contraceptive, the artificial estrogen 17α-ethinylestradiol (EE2), simultaneously in three deeply divergent systematic anuran families, a model-species, Xenopus laevis (Pipidae), and two non-models, Hyla arborea (Hylidae) and Bufo viridis (Bufonidae). Our new approach combines synchronized tadpole exposure to three EE2-concentrations (50, 500, 5,000 ng/L) in a flow-through-system and pioneers genetic and histological sexing of metamorphs in non-model anurans for EDC-studies. This novel methodology reveals striking quantitative differences in genetic-male-to-phenotypic-female sex reversal in non-model vs. model species. Our findings qualify molecular sexing in EDC-analyses as requirement to identify sex reversals and state-of-the-art approaches as mandatory to detect speciesspecific vulnerabilities to EDCs in amphibians. KW - Endocrine disruption KW - 17α-ethinylestradiol (EE2) KW - Mass spectrometry KW - Sex reversal PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-357797 DO - https://doi.org/10.1038/srep23825 SN - 2045-2322 VL - 6 SP - Article No. 23825, 1 EP - 8 PB - Nature publishing group AN - OPUS4-35779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tamschick, S. A1 - Rozenblut-Kościsty, B. A1 - Ogielska, M. A1 - Lehmann, Andreas A1 - Lymberakis, P. A1 - Hoffmann, F. A1 - Lutz, I. A1 - Schneider, Rudolf A1 - Kloas, W. A1 - Stöck, M. T1 - Impaired gonadal and somatic development corroborate vulnerability differences to the synthetic estrogen ethinylestradiol among deeply diverged anuran lineages N2 - Amphibians are undergoing a global decline. One poorly investigated reason could be the pollution of aquatic habitats by endocrine disrupting compounds (EDCs). We tested the susceptibility to the synthetically stabilized estrogen 17α-ethinylestradiol (EE2) in three deeply diverged anuran species, differing in sex determination systems, types of gonadogenesis and larval ecologies. To understand whether data from the amphibian model Xenopus laevis (Pipidae) are analogous and applicable to only distantly related non-model amphibians, tadpoles of X. laevis, Hyla arborea (Hylidae) and Bufo viridis (Bufonidae) were simultaneously exposed to 50, 500 and 5000 ng/L EE2 from hatching until completion of metamorphosis, using a flow-through-system under identical experimental conditions. Comparing molecularly established genetic with histologically assessed phenotypic sex in all species, we have recently shown that EE2 provoked numerous genetic-male-to-phenotypic-female sex reversals and mixed sex individuals, confirming overall its expected feminizing effect. In the present study, we focus on the influence of EE2 on gonadal and somatic development. Anatomy and histology revealed several species-specific effects. In both non-model species, H. arborea and B. viridis, high numbers of anatomically impaired gonads were observed. In H. arborea, exposed to 5000 ng/L EE2, numerous underdeveloped gonads were detected. Whereas EE2 did not alter snout-to-vent length and body weight of X. laevis metamorphs, H. arborea showed a treatment-dependent decrease, while B. viridis exhibited an increase in body weight and snout-to-vent length. Apart from a concentration-dependent occurrence of yellowish skin color in several H. arborea, no organ-specific effects were detected. Since EE2 ubiquitously occurs in many aquatic ecosystems and affects sexual and somatic development, among EDCs, it may indeed contribute to amphibian decline. The inter-species variation in developmental EE2-effects corroborates species-specific vulnerability differences towards EDCs between deeply diverged amphibian groups KW - Endocrine disruption KW - Ethinylestradiol KW - Mass spectrometry PY - 2016 DO - https://doi.org/10.1016/j.aquatox.2016.07.001 SN - 0166-445X SN - 1879-1514 VL - 177 SP - 503 EP - 514 PB - Elsevier AN - OPUS4-37633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lutz, C. A1 - Breuckmann, M. A1 - Hampel, S. A1 - Kreyenschmidt, M. A1 - Ke, X. A1 - Beuermann, S. A1 - Schafner, K. A1 - Turek, T. A1 - Kunz, U. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Fittschen, U. E. A. T1 - Characterization of Dimeric Vanadium Uptake and Species in Nafion™ and Novel Membranes from Vanadium Redox Flow Batteries Electrolytes N2 - A core component of energy storage systems like vanadium redox flow batteries (VRFB) is the polymer electrolyte membrane (PEM). In this work, the frequently used perfluorosulfonic-acid (PFSA) membrane Nafion™ 117 and a novel poly (vinylidene difluoride) (PVDF)-based Membrane are investigated. A well-known problem in VRFBs is the vanadium permeation through the membrane. The consequence of this so-called vanadium crossover is a severe loss of capacity. For a better understanding of vanadium transport in membranes, the uptake of vanadium ions from electrolytes containing Vdimer(IV–V) and for comparison also V(II), V(III), V(IV), and V(V) by both membranes was studied. UV/VIS spectroscopy, X-ray absorption near edge structure spectroscopy (XANES), total reflection X-ray fluorescence spectroscopy (TXRF), inductively coupled plasma optical emission spectrometry (ICP-OES), and micro X-ray fluorescence spectroscopy (microXRF) were used to determine the vanadium concentrations and the species inside the membrane. The results strongly support that Vdimer(IV–V), a dimer formed from V(IV) and V(V), enters the nanoscopic water-body of Nafion™ 117 as such. This is interesting, because as of now, only the individual ions V(IV) and V(V) were considered to be transported through the membrane. Additionally, it was found that the Vdimer(IV–V) dimer partly dissociates to the individual ions in the novel PVDF-based membrane. The Vdimer(IV–V) dimer concentration in Nafion™ was determined and compared to those of the other species. After three days of equilibration time, the concentration of the dimer is the lowest compared to the monomeric vanadium species. The concentration of vanadium in terms of the relative uptake λ = n(V)/n(SO3 ) are as follows: V(II) [λ = 0.155] > V(III) [λ = 0.137] > V(IV) [λ = 0.124] > V(V) [λ = 0.053] > Vdimer(IV–V) [λ = 0.039]. The results show that the Vdimer(IV–V) dimer Needs to be considered in addition to the other monomeric species to properly describe the transport of vanadium through Nafion™ in VRFBs. KW - MicroXRF KW - VRFB KW - PVDF-based membrane KW - UV/VIS KW - XANES KW - TXRF KW - ICP-OES PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530676 DO - https://doi.org/10.3390/membranes11080576 VL - 11 IS - 8 SP - 576 PB - MDPI AN - OPUS4-53067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Maldonado, M. T1 - Interaction véhicule-voie-sol et vibrations dues aux trains - Modélisations et vérifications expérimentales N2 - Cet article présente plusieurs modèles numériques pour l’étude des phénomènes vibratoires lors du passage d’un train. Les modèles permettent d’estimer la propagation des ondes et les réceptances pour le sol et la voie. Le sol multicouche et le couplage voie-sol sont traités par une (double) intégration sur les nombres d’onde. Les raideurs dynamiques de la voie et du véhicule sont combinées et les forces d’excitation roue-rail dues aux irrégularités de la voie et des roues sont calculées. Ces forces d’excitation permettent de simuler les vibrations du sol lors du passage d’un train. Les modèles sont validés par comparaison avec des mesures sur deux sites, en France et en Allemagne. Les vibrations calculées correspondent bien aux vibrations mesurées. ---------------------------------------------------------------------------------------------------- This contribution presents models that are necessary to calculate the vibrations due to the passage of a train. The models allow to calculate the propagation of the waves and the receptances of the soil and the track. The layered soil and the coupling with the track are treated by a (double) integration in wavenumber domain. The dynamic stiffnesses of the track and vehicle are combined and the excitation forces due to the irregularities of the track and the wheel are calculated. Finally, these excitation forces are used to simulate the ground vibration of a passing train. All these models are validated by a number of different measurements at two sites in France and Germany. KW - Ondes du sol multicouche KW - Irrégularités et forces roue-rail KW - Wave propagation KW - Layered soil KW - Wheel-rail irregularities and forces PY - 2011 DO - https://doi.org/10.3166/EJCM.20.257-280 SN - 1779-7179 VL - 20 IS - 5-6 SP - 257 EP - 280 PB - Hermès Science : Lavoisier CY - Paris AN - OPUS4-24557 LA - fra AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Müller, R. A1 - Brechbühl, Y. A1 - Lutzenberger, S. A1 - Said, Samir A1 - Auersch, Lutz A1 - Guigou-Carter, C. A1 - Villot, M. A1 - Müller, R. ED - Degrande, G. ED - al., et T1 - Vibration Excitation at Turnouts, Mechanism, Measurements and Mitigation Measures N2 - There is a strong need for cost-effective mitigation measures for turnouts. SBB has initiated a series of examinations using different methodologies to gain a deeper understanding of the excitation mechanisms at low frequencies, in addition to that obtained in the RIVAS project. To date it is not yet clear what constitutes a complete measurement data set that would enable understanding most of the vibration excitation mechanisms in turnouts. Increasing vibration at turnouts in comparison to normal track is observed for all measured frequencies. The different methodologies are presented in the paper. Under-sleeper pads (USP) are a cost-effective method to reduce vibration at frequencies above 63 Hz (1/3 octave), but there is probably no improvement for frequencies below 63 Hz. A first test of new frog geometry did not show relevant improvements in Vibration emission in comparison to a reference frog geometry. Axle box acceleration measurements are an interesting method to identify defects in a turnout. A specialized measurement system of rail roughness could identify certain geometry Problem areas for some frogs. Noise increases also are observed at turnouts for frequencies ranging between 80 to 1000 Hz. The use of railway source models to calculate contact forces for ballasted track and turnouts seems promising, in particular for understanding the influence of ground. KW - Turnout KW - Switch KW - Vibration excitation KW - Vibration measurements PY - 2021 SN - 978-3-030-70288-5 DO - https://doi.org/10.1007/978-3-030-70289-2_42 SN - 1612-2909 VL - 150 SP - 403 EP - 410 PB - Springer Nature Switzerland AG CY - Cham AN - OPUS4-52612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nöll, G. A1 - Daub, J. A1 - Lutz, M. A1 - Rurack, Knut T1 - Synthesis, spectroscopic properties, and electropolymerization of azulene dyads N2 - Four azulene dyads have been synthesized and studied by spectroscopic and electrochemical methods. A triarylamine, a boron-dipyrromethene (BDP or BODIPY), a porphyrin, and an isoalloxazine moiety have been linked to an extended π electron system at the 2-position of azulene, leading to the dyads 1–4, respectively. For the synthesis of 1–4, first 2-(4-ethynyl-phenyl)azulene (EPA) was prepared, which was further reacted with the halogenated chromophores by Pd-catalyzed cross-coupling reactions. The dyads 1–4 exhibit strong absorption bands in the visible range, which are dominated by the absorption spectra of the individual subchromophores. Fluorometric studies of 2–4 revealed that after excitation of the subchromophoric unit attached to the parent azulene moiety, quenching mainly through energy transfer to azulene is effective, whereas possible charge-transfer interactions play only a minor role. Potentiodynamic oxidation of the dyads 1–4 leads to the formation of polymer films, which are deposited at the electrode. The polymer film derived from 1 was further characterized by spectroelectrochemistry. During positive doping of poly-1, a strong absorption band appears at 13,200 cm–1, which is typical for triarylamine radical cations. This band is overlapping with a broad absorption band in the low-energy region that might be caused by charge-transfer interactions within the polymer. KW - Azulen KW - Elektropolymerisation KW - Energietransfer KW - Farbstoffe KW - Fluoreszenz PY - 2011 DO - https://doi.org/10.1021/jo200080v SN - 0022-3263 SN - 1520-6904 VL - 76 IS - 12 SP - 4859 EP - 4873 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lutz, J.-F. A1 - Pfeifer, S. A1 - Chanana, M. A1 - Thünemann, Andreas A1 - Bienert, Ralf T1 - H-Bonding-Directed Self-Assembly of Synthetic Copolymers Containing Nucleobases: Organization and Colloidal Fusion in a Noncompetitive Solvent N2 - The self-organization of random copolymers composed of a nucleobase monomer (either 1-(4-vinylbenzyl)thymine or 9-(4-vinylbenzyl)adenine) and dodecyl methacrylate (DMA) was studied in dilute chloroform solutions. The balance between the molar fractions of the nucleobase monomer (leading to intermolecular H-bonding) and DMA (soluble moiety in chloroform) in the polymer chains was found to be the parameter that principally influences the self-organization. DMA-rich copolymers are molecularly soluble in chloroform, whereas nucleobase-rich copolymers are insoluble in this solvent. Copolymers possessing an equimolar comonomer composition self-assemble into micrometer-sized particles physically cross-linked by intermolecular H-bonds (either thymine-thymine or adenine-adenine interactions, depending on the studied copolymer). Nevertheless, when mixed together, thymine- and adenine-based colloids fuse into thermodynamically stable microspheres cross linked by adenine-thymine interactions. KW - Synthetic polymers KW - Self-organization KW - H-bonding KW - Nucleobases KW - Confocal fluorescence microscopy PY - 2006 DO - https://doi.org/10.1021/la061382a SN - 0743-7463 SN - 1520-5827 VL - 22 IS - 17 SP - 7411 EP - 7415 PB - American Chemical Society CY - Washington, DC AN - OPUS4-12637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -