TY - BOOK A1 - Maiwald, Michael A1 - Bassler, M. A1 - Deilmann, M. A1 - Ens, W. A1 - Frenzel, F. A1 - Gerlach, M. A1 - Großmann, J. A1 - Grümbel, F. A1 - Heisterkamp, M. A1 - Kaiser, U. A1 - Lambrecht, A. A1 - Ohlenkamp, R. A1 - Pötter, T. A1 - Pyka, P. A1 - Roos, E. A1 - Schmidt, A. A1 - Schünemann, U. A1 - Theuer, M. A1 - Tukle, A. A1 - Weber, N. T1 - Technologie-Roadmap „Prozess-Sensoren 2027+“ N2 - Die Technologie-Roadmap „Prozess-Sensoren 2027+“ ist eine Weiterentwicklung vorgängiger Technologie-Roadmaps. Im Zentrum dieser Roadmaps stehen Sensoren zur Erfassung von physikalischen und chemischen Messgrößen mittels spezifischer und unspezifischer Messverfahren, die zur Steuerung und dem besseren Verständnis von Prozessen dienen. Die Roadmap fasst die gemeinsame Technologie- und Marktsicht von Anwendern, Herstellern und Forschungseinrichtungen im Bereich Prozess-Sensorik in der verfahrenstechnischen Industrie zusammen. Sie beschreibt die wesentlichen Trends im Bereich Prozess-Sensorik und künftige Handlungsbedarfe für Hersteller, Anwender sowie für Einrichtungen der Forschung und Lehre. Für die aktuellen und zukünftigen Anforderungen an Prozess-Sensoren werden 19 Thesen formuliert. Die Thesen basieren auf den Thesen der vorangegangenen Roadmaps, wobei die aus heutiger Sicht erforderlichen Anpassungen, Ergänzungen und teilweise auch Streichungen vorgenommen wurden. Die Thesen sind in 5 Themencluster eingeordnet. Digitalisierung und Nachhaltigkeit sind übergreifende Kernthemen der künftigen Entwicklung. KW - Technologie-Roadmap Prozess-Sensoren KW - Prozessindustrie KW - Prozessanalytik KW - Sensorik KW - Digitalisierung KW - NAMUR PY - 2021 SP - 1 EP - 63 AN - OPUS4-53741 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Lucon, E. A1 - Abiko, K. A1 - Lambrecht, M. A1 - Rehmer, Birgit T1 - Tensile properties of commercially pure, high-purity and ultra-high-purity iron: Results of an international round-robin N2 - The room temperature tensile properties of iron with different purity levels (commercially pure, high-purity, and ultra-high-purity) were characterized at different strain rates in the framework of an international Round-Robin involving four laboratories (BAM, IMR-TU, NIST, and SCK•CEN). The test results were collected and analyzed by NIST, and are presented in this Technical Note. Data from all the participating laboratories were found in good agreement, thus allowing a clear assessment of the influence of strain rate and purity level on tensile properties (mechanical resistance and ductility). A clear increase of yield strength and, to a lesser extent, tensile strength was observed for all materials as strain rate increases and purity level decreases. The highest strain rate sensitivity was associated with the highest purity level (ultra-high-purity Fe). Ductility trends were less unequivocal, but typically an increase of elongation at fracture and reduction of area was detected as strain rate and purity level increase. Significant differences in tensile properties were observed between the two investigated types of high-purity Fe, which can be attributed to an influence of the production process in terms of melting environment (atmosphere and crucible), as well as differences in chemical compositions. KW - Commercially pure iron KW - Ductility KW - High-purity iron KW - Purity level KW - Round-Robin KW - Strain rate KW - Tensile strength KW - Ultra-high-purity iron KW - Yield strength KW - Tensile properties KW - Pure iron PY - 2015 DO - https://doi.org/10.6028/NIST.TN.1879 SP - 1 EP - 36 AN - OPUS4-33190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -