TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Heise, M. A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - New 2D layered structures with direct fluorine-metal bonds: MF(CH3COO) (M: Sr, Ba, Pb) JF - CrystEngComm N2 - New coordination polymers with 2D network structures with fluorine directly coordinated to the metal ion were prepared both via mechanochemical synthesis and fluorolytic sol–gel synthesis. Depending on the synthesis route, the samples show different particle sizes, according to SEM imaging. The crystal structures of barium acetate fluoride, strontium acetate fluoride, and lead acetate fluoride (BaFIJCH3COO), SrFIJCH3COO) and PbFIJCH3COO)) were solved from X-ray powder diffraction data. The structure solution is backed by the results from 19F MAS NMR, FT IR data, and thermal analysis. The calculated chemical shifts of the 19F MAS NMR spectra coincide well with the measured ones. It turns out that the grinding conditions have a remarkable influence on the mechanochemical synthesis and its products. Our systematic study also indicates a strong influence of the atomic radii of Ca, Sr, Ba, and Pb on the success of the syntheses. KW - Mechanochemistry KW - Coordination polymers PY - 2020 DO - https://doi.org/10.1039/d0ce00287a VL - 22 IS - 16 SP - 2772 EP - 2780 PB - Royal Society of Chemistry AN - OPUS4-50789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Delbeck, S. A1 - Vahlsing, Thorsten A1 - Leonhardt, S. A1 - Steiner, G. A1 - Heise, H.M. T1 - Non-invasive monitoring of blood glucose using optical methods for skin spectroscopy - opportunities and recent advances JF - Analytical and Bioanalytical Chemistry N2 - Diabetes mellitus is a widespread disease with greatly rising patient numbers expected in the future, not only for industrialized countries but also for regions in the developing world. There is a need for efficient therapy, which can be via self-monitoring of blood glucose levels to provide tight glycemic control for reducing the risks of severe health complications. Advancements in diabetes technology can nowadays offer different sensor approaches, even for continuous blood glucose monitoring. Non-invasive blood glucose assays have been promised for many years and various vibrational spectroscopy-based methods of the skin are candidates for achieving this goal. Due to the small spectral signatures of the glucose hidden among a largely variable background, the largest signal-to-noise ratios and multivariate calibration are essential to provide the method applicability for self-monitoring of blood glucose. Besides multiparameter approaches, recently presented devices based on photoplethysmography with wavelengths in the visible and near-infrared range are evaluated for their potential of providing reliable blood glucose concentration predictions. KW - Non-invasive glucose sensing KW - Vibrational spectroscopy KW - Photoplethysmography KW - Multivariate calibration KW - Validation studies PY - 2019 DO - https://doi.org/10.1007/s00216-018-1395-x SN - 1618-2650 SN - 1618-2642 VL - 411 IS - 1 SP - 63 EP - 77 PB - Springer-Verlag GmbH Germany, part of Springer Nature AN - OPUS4-46714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vahlsing, Thorsten A1 - Delbeck, S. A1 - Leonhardt, S. A1 - Heise, H.M. T1 - Noninvasive monitoring of blood glucose using color-coded photoplethysmographic images of the illuminated fingertip within the visible and near-infrared range: Opportunities and questions JF - Journal of Diabetes Science and Technology N2 - Noninvasive blood glucose assays have been promised for many years and various molecular spectroscopy-based methods of skin are candidates for achieving this goal. Due to the small spectral signatures of the glucose used for direct physical detection, moreover hidden among a largely variable background, broad spectral intervals are usually required to provide the mandatory analytical selectivity, but no such device has so far reached the accuracy that is required for self-monitoring of blood glucose (SMBG). A recently presented device as described in this journal, based on photoplethysmographic fingertip images for measuring glucose in a nonspecific indirect manner, is especially evaluated for providing reliable blood glucose concentration predictions. KW - Color sensing KW - Noninvasive glucose sensing KW - Plethysmographic skin imaging KW - Skin tissue spectroscopy KW - Visible/near-infrared spectroscopy PY - 2018 DO - https://doi.org/10.1177/1932296818798347 SN - 1932-2968 VL - 12 IS - 6 SP - 1169 EP - 1177 PB - Sage Publishing AN - OPUS4-46715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -