TY - RPRT A1 - Wiesler, F. A1 - Hund-Rinke, K. A1 - George, E. A1 - Greef, J.-M. A1 - Holz, F. A1 - Hölze, L.E. A1 - Hülsbergen, K.-J. A1 - Martin, S. A1 - Severin, K. A1 - Spielvogel, S. A1 - Geiger, P. A1 - Nawotke, C. A1 - Kehlenbeck, H. A1 - Schenkel, H. A1 - Adam, Christian A1 - Bloem, E. A1 - Frank, D. A1 - Goldbach, H.E. A1 - Heene, M. A1 - Kratz, S. A1 - Kruse, A. A1 - Möller, K. A1 - Pinnekamp, J. A1 - Schoumans, O.F. A1 - Vogel, Christian A1 - Wulf, S. T1 - Recyclingphosphate in der Düngung – Nutzen und Grenzen N2 - Weltweit werden etwa 80–85 % aller abgebauten Rohphosphate für die Produktion von Düngemitteln verwendet. Bei noch steigendem Bedarf an Phosphor (P) geht man derzeit davon aus, dass die weltweiten P-Reserven noch über 200 Jahre ausreichen. Um den P-Vorrat langfristig abzusichern, sollte der in Reststoffen enthaltene Phosphor möglichst umfänglich genutzt werden. Dieser Forderung trägt das von der Bundesregierung 2012 erstmals beschlossene Deutsche Ressourceneffizienzprogramm ProgRess Rechnung. Rohphosphat wird auch seitens der Europäischen Kommission aufgrundseiner ökonomischen Bedeutung und des unsicheren Angebots als „kritischer Rohstoff“ eingestuft. Vor diesem Hintergrund hat die Bundesregierung in der Verordnung zur Neuordnung der Klärschlammverwertung vom 27. September 2017 in Deutschland eine verpflichtende technische Rückgewinnung von Phosphor für Abwasserbehandlungsanlagen ab einer Ausbaugröße von 100.000 Einwohnerwerten (12 Jahre nach Inkrafttreten der Verordnung) bzw. ab einer Ausbaugröße von über 50.000 Einwohnerwerten (15 Jahre nach Inkrafttreten der Verordnung) vorgeschrieben. Die Verordnung enthält keine Vorgaben hinsichtlich der anzuwendenden Technologie bei der Phosphorrückgewinnung. Ausgenommen von der Rückgewinnungspflicht sind Klärschlämme mit niedrigen Phosphorgehalten (weniger als 20 Gramm Phosphor je Kilogramm Klärschlamm-Trockenmasse). Auch die im Jahre 2017 verabschiedeten neuen Rechtsvorschriften für die Düngung verlangen zukünftig einen nachhaltigen und ressourceneffizienten Umgang mit Nährstoffen bei der landwirtschaftlichen Erzeugung und schränken die P-Zufuhr insbesondere auf hoch versorgten Böden ein (Düngeverordnung vom 26. Mai 2017). Dies wird zu einem mehr am Pflanzenbedarf orientierten und ggf. vermehrt überbetrieblichen Einsatz von wirtschaftseigenen Düngern führen. Um den politischen und gesetzlichen Anforderungen gerecht zu werden, müssen einerseits wirksame und kosteneffiziente technische Verfahren zum P-Recycling (weiter)entwickelt werden. Andererseits müssen die Recyclingprodukte die Anforderungen für eine direkte Verwendung in der Landwirtschaft oder als Rohstoff für die Herstellung von Düngemitteln erfüllen. In dem vorliegenden Standpunkt wird zunächst der potenzielle Beitrag von Reststoffen zur Deckung des P-Bedarfs in der deutschen Pflanzenproduktion geschätzt. Für die wichtigsten Reststoffe werden technische Verfahren zur P-Rückgewinnung bzw. Aufarbeitung skizziert. Auf Basis der Anforderungen der Landwirtschaft bzw. der Düngemittelindustrie an die P-Recyclingprodukte werden deren Herstellungsverfahren bewertet. Schließlich wird der Regelungs- und Forschungsbedarf formuliert. KW - Phosphor KW - Düngemittel KW - Diffusive Gradients in thin films (DGT) PY - 2020 SP - 1 EP - 19 PB - Bundesministerium für Ernährung und Landwirtschaft (BMEL) CY - Berlin AN - OPUS4-51011 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gillatt, J. A1 - Julian, K. A1 - Brett, K. A1 - Goldbach, M. A1 - Grohmann, J. A1 - Heer, B. A1 - Nichols, K. A1 - Roden, K. A1 - Rook, T. A1 - Schubert, T. A1 - Stephan, Ina T1 - The microbial resistance of polymer dispersions and the efficacy of polymer dispersion biocides - A statistically validated method N2 - The biodeterioration of water-based manufactured formulations, such as polymer dispersions, is a major problem for the producing companies and the users of such products. Industrial preservatives, also known as biocides, are therefore used to protect these and similar products from the effects of microorganisms, predominantly bacteria and yeasts. In the absence of internationally recognised standard methods for determining the resistance of polymer dispersions to microbial growth and the efficacy of biocides used in them, protocols for testing other products, e.g., paints, have been adapted, and other methods produced by manufacturing companies, test laboratories, and academic institutions have been used. Often these do not take into account the specific nature of the materials being tested, the types of organism commonly causing contamination, and the conditions that the polymer dispersions will be exposed to during manufacture, storage, and use. By conducting a series of round-robin, collaborative tests, the member organisations of the International Biodeterioration Research Group Polymer Dispersion Working Group have identified the bacteria that commonly infect polymer dispersions, defined the main parameters necessary for a standard method of test, and developed a protocol that is robust, repeatable, and reproducible. The recommended test involves three repeat inoculations of the material with a previously determined mix of seven Gram-negative bacteria and evaluation of living cells by a simple plating technique. The work reported here, carried out by nine participating laboratories, is a final statistical validation and suggests that the method is eminently suitable as a standard test method. KW - Biocides KW - Biodeterioration KW - IBRG KW - Polymer dispersions KW - Test method PY - 2015 DO - https://doi.org/10.1016/j.ibiod.2015.04.028 SN - 0964-8305 VL - 104 SP - 32 EP - 37 PB - Elsevier CY - Barking AN - OPUS4-33852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -