TY - JOUR A1 - Polte, Jörg A1 - Tuaev, X. A1 - Wuithschick, M. A1 - Fischer, A. A1 - Thünemann, Andreas A1 - Rademann, K. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles N2 - The formation mechanisms of silver nanoparticles using aqueous silver perchlorate solutions as precursors and sodium borohydride as reducing agent were investigated based on time-resolved in situ experiments. This contribution addresses two important issues in colloidal science: (i) differences and analogies between growth processes of different metals such as gold and silver and (ii) the influence of a steric stabilizing agent on the growth process. The results reveal that a growth due to coalescence is a fundamental growth principle if the monomer-supplying chemical reaction is faster than the actual particle formation. KW - Silver nanoparticle growth KW - Formation mechanisms KW - Nucleation KW - SAXS PY - 2012 DO - https://doi.org/10.1021/nn301724z SN - 1936-0851 VL - 6 IS - 7 SP - 5791 EP - 5802 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-26427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duwe, M. A1 - Quast, J.-H. A1 - Schneider, S. A1 - Fischer, Daniel A1 - Beck, Uwe T1 - Thin-film metrology of tilted and curved surfaces by imaging Mueller-matrix ellipsometry N2 - For the vast majority of ellipsometric measurements, the application of planar substrates is mandatory and requires a proper sample alignment prior to the measurement. Here, the authors present a generalized approach of how to extract the isotropic ellipsometric sample parameters from an imaging Mueller-matrix measurement even if the sample is significantly misaligned. They validate the method by layer-thickness calculations based on imaging Mueller-matrix measurements of flat crystalline silicon samples that were misaligned on purpose. Furthermore, they also exploit this method’s capabilities to perform spatially resolved layer-thickness measurements of a single-layer indium-tin-oxide coating on a fused-silica microlens without the need of realignment or repositioning of the sample during the measurement. T2 - 8th International conference on spectroscopic ellipsometry (ICSE-8) CY - Barcelona, Spain DA - 26.05.2019 KW - Metrology KW - Thin films KW - Polarization spectroscopy KW - Spectroskopic Imaging KW - Mueller-Matrix imaging ellipsometry PY - 2019 DO - https://doi.org/10.1116/1.5122757 SN - 2166-2746 SN - 2327-9877 VL - 37 IS - 6 SP - 062908 PB - AIP CY - New York, NY AN - OPUS4-50209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Daniel A1 - Griepentrog, Michael A1 - Beck, Uwe A1 - Duwe, M. A1 - Quast, J.-H. A1 - Schneider, S. T1 - Effect of curvature of spherical microscopic indentations on the ellipsometric readout N2 - The authors describe and interpret curvature-related changes to the ellipsometric readout. As model system for a concave curvature, a set of three spherical microscopic indents in silicon (100) of different sizes was prepared by instrumented indentation testing using a spherical indenter. For reference, these samples were characterized by AFM to reveal the topography of each structure. The concavelike indents were analyzed by Mueller-Matrix imaging ellipsometry to extract lateral intensity images of 12 elements of the Mueller-Matrix. As a result of the detailed analysis of the image elements m22, m23, and m14, it was possible to correlate intensity changes and symmetry properties to depolarization and cross polarization induced by the edge threshold and the curved surface of the indent. KW - Spectroskopic Imaging KW - Mueller-Matrix imaging ellipsometry KW - Structural anomalies KW - Structural inhomogenities PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498105 DO - https://doi.org/10.1116/1.5122252 VL - 37 IS - 6 SP - 062906-1 EP - 062906-5 PB - American Vacuum Society AN - OPUS4-49810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kockert, M. A1 - Mitdank, R. A1 - Zykov, A. A1 - Kowarik, Stefan A1 - Fischer, F. T1 - Absolute Seebeck coefficient of thin platinum films N2 - The influence of size effects on the thermoelectric properties of thin platinum films is investigated and compared to the bulk. Structural properties, like the film thickness and the grain size, are varied. We correlate the electron mean free path with the temperature dependence of the electrical conductivity and the absolute Seebeck coefficient SPt of platinum. A measurement platform was developed as a standardized method to determine SPt and show that SPt,film is reduced compared to SPt,bulk. Boundary and surface scattering reduce the thermodiffusion and the phonon drag contribution to SPt,film by nearly the same factor. We discuss in detail on behalf of a model, which describes the temperature dependence of the absolute Seebeck coefficient, the influence of size effects of electron-phonon and phonon-phonon interaction on SPt. KW - Thin magnetic films PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499007 DO - https://doi.org/10.1063/1.5101028 SN - 0021-8979 VL - 126 SP - 105106 PB - AIP AN - OPUS4-49900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauzon, C. A1 - Mishurova, Tatiana A1 - Fischer, M. A1 - Ahlström, J. A1 - Fritsch, Tobias A1 - Bruno, Giovanni A1 - Hryha, Eduard T1 - Impact of contour scanning and helium-rich process gas on performances of Alloy 718 lattices produced by laser powder bed fusion N2 - Contour scanning and process gas type are process parameters typically considered achieving second order effects compared to first order factors such as laser power and scanning speed. The present work highlights that contour scanning is crucial to ensure geometrical accuracy and thereby the high performance under uniaxial compression of complex Alloy 718 lattice structures. Studies of X-ray computed tomography visualizations of as-built and compression-strained structures reveal the continuous and smooth bending and compression of the walls, and the earlier onset of internal contact appearance in the denser lattices printed with contour. In contrast, the effect of addition of He to the Ar process gas appears to have limited influence on the mechanical response of the lattices and their microstructure as characterized by electron backscattered diffraction. However, the addition of He proved to significantly enhance the cooling rate and to reduce the amount of the generated spatters as evidenced by in situ monitoring of the process emissions, which is very promising for the process stability and powder reusability during laser powder bed fusion. KW - Additive manufacturing KW - Laser powder bed fusion KW - Gyroid lattice KW - Process atmosphere PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546632 DO - https://doi.org/10.1016/j.matdes.2022.110501 SN - 0264-1275 VL - 215 SP - 110501 PB - Elsevier Ltd. AN - OPUS4-54663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütters, H. A1 - Fischer, S. A1 - Le, Quynh A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Maßmann, J. A1 - Ostertag-Henning, C. A1 - Wolf, J. Lennard A1 - Pumpa, M. A1 - Lubenau, U. A1 - Knauer, S. A1 - Jaeger, P. A1 - Neumann, A. A1 - Svensson, K. A1 - Lempp, C. A1 - Menezes, F. A1 - Hagemann, B. T1 - Towards defining reasonable minimum composition thresholds – impacts of variable CO2 stream compositions on transport, injection and storage N2 - The collaborative project “Impacts of impurities in CO2 streams captured from different emitters in a regional cluster on transport, injection and storage (CLUSTER)” aimed to set up recommendations on how to define “reasonable minimum composition thresholds” that CO2 streams should meet when accessing CO2 transport pipeline networks. Within CLUSTER, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the whole CCS chain. Investigations included, amongst others, impacts on: Corrosion of pipeline steel, pipeline network design and related transport costs, alteration of well bore cements, pressure development and rock integrity, geochemical reactions, and petrophysical and geomechanical rock properties. All investigations are based on a generic CCS chain scenario. In this scenario, CO2 streams are captured from a spatial cluster of eleven emitters and collected in a regional pipeline network. Emitters comprise seven fossil fuel-fired power plants equipped with different capture technologies, two cement plants, one refinery and one integrated iron and steel plant. In total, 19.78 Mio t CO2 (including impurities) are captured in the emitter cluster annually. The combined CO2 stream is transported in a trunk line with a length of 400 km (100 km of these offshore) and is injected into five generic storage structures. The storage reservoirs are saline aquifers of the Buntsandstein. The investigations revealed beneficial and deteriorating impacts of different impurities and combinations thereof. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the modelled variable compositions and mass flow rates were observed. Based on the results, the CLUSTER project team recommends not to define “minimum composition thresholds” for CO2 streams as strict threshold values for each individual impurity in the stream. Instead, CO2 stream compositions and variabilities for specific CCS projects should be constrained with regard to a set of parameters including i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of CO2 stream composition, and iv) impurity combinations to be avoided. T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Online meeting DA - 15.03.2021 KW - Corrosion KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2021 DO - https://doi.org/10.2139/ssrn.3816427 SP - 1 EP - 18 AN - OPUS4-52418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütters, H. A1 - Fischer, S. A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Maßmann, J. A1 - Ostertag-Henning, C. A1 - Lennard Wolf, J. A1 - Pumpa, M. A1 - Lubenau, U. A1 - Knauer, S. A1 - Jaeger, P. A1 - Neumann, A. A1 - Svensson, K. A1 - Pöllmann, H. A1 - Lempp, C. A1 - Menezes, F. A1 - Hagemann, B. T1 - Towards Defining Reasonable Minimum Composition Thresholds – Impacts of Variable CO2 Stream Compositions on Transport, Injection and Storage N2 - The collaborative project “Impacts of impurities in CO2 streams captured from different emitters in a regional cluster on transport, injection and storage (CLUSTER)” aimed to set up recommendations on how to define “reasonable minimum composition thresholds” that CO2 streams should meet when accessing CO2 transport pipeline networks. Within CLUSTER, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the whole CCS chain. Investigations included, amongst others, impacts on: • corrosion of pipeline steel, • pipeline network design and related transport costs, • alteration of well bore cements, • pressure development and rock integrity, • geochemical reactions, and • petrophysical and geomechanical rock properties. All investigations are based on a generic CCS chain scenario. In this scenario, CO2 streams are captured from a spatial cluster of eleven emitters and collected in a regional pipeline network. Emitters comprise seven fossil fuel-fired power plants equipped with different capture technologies, two cement plants, one refinery and one integrated iron and steel plant. In total, 19.78 Mio t CO2 (including impurities) are captured in the emitter cluster annually. The combined CO2 stream is transported in a trunk line with a length of 400 km (100 km of these offshore) and is injected into five generic storage structures. The storage reservoirs are saline aquifers of the Buntsandstein. The investigations revealed beneficial and deteriorating impacts of different impurities and combinations thereof. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the modelled variable compositions and mass flow rates were observed. Based on the results, the CLUSTER project team recommends not to define “minimum composition thresholds” for CO2 streams as strict threshold values for each individual impurity in the stream. Instead, CO2 stream compositions and variabilities for specific CCS projects should be constrained with regard to a set of parameters including i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of CO2 stream composition, and iv) impurity combinations to be avoided. T2 - The 15th Greenhouse Gas Control Technologies Conference CY - Online meeting DA - 15.03.2021 KW - Corrosion KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2021 DO - https://doi.org/10.2139/ssrn.3816427 SP - 1 EP - 18 PB - Elservier AN - OPUS4-52940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, J.L. A1 - Lutomski, C.A. A1 - El-Baba, T.J. A1 - Siriwardena-Mahanama, B.N. A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Allen, M. J. A1 - Trimpin, S. T1 - Matrix-assisted ionization-ion mobility spectrometry-mass spectrometry: Selective analysis of a europium-PEG complex in a crude mixture N2 - The analytical utility of a new and simple to use ionization method, matrix-assisted ionization (MAI), coupled with ion mobility spectrometry (IMS) and mass spectrometry (MS) is used to characterize a 2-armed europium(III)-containing poly(ethylene glycol) (Eu-PEG) complex directly from a crude sample. MAI was used with the matrix 1,2-dicyanobenzene, which affords low chemical background relative to matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). MAI provides high ion abundance of desired products in comparison to ESI and MALDI. Inductively coupled plasma-MS measurements were used to estimate a maximum of 10% of the crude sample by mass was the 2-arm Eu-PEG complex, supporting evidence of selective ionization of Eu-PEG complexes using the new MAI matrix, 1,2-dicyanobenzene. Multiply charged ions formed in MAI enhance the IMS gas-phase separation, especially relative to the singly charged ions observed with MALDI. Individual components are cleanly separated and readily identified, allowing characterization of the 2-arm Eu-PEG conjugate from a mixture of the 1-arm Eu-PEG complex and unreacted starting materials. Size-exclusion chromatography, liquid chromatography at critical conditions, MALDI-MS, ESI-MS, and ESI-IMS-MS had difficulties with this analysis, or failed. KW - Matrix-assisted ionization ion mobility spectrometry mass spectrometry KW - Europium KW - Poly(ethylene glycol) KW - Size-exclusion chromatography KW - Liquid chromatography at critical conditions KW - Electrospray ionization KW - Matrix-assisted laser desorption/ionization KW - Inductively coupled plasma-mass spectrometry KW - ESI KW - MALDI KW - SEC PY - 2015 DO - https://doi.org/10.1007/s13361-015-1233-8 SN - 1044-0305 VL - 26 IS - 12 SP - 2086 EP - 2095 PB - Elsevier CY - New York, NY AN - OPUS4-35283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ortel, Erik A1 - Fischer, A. A1 - Chuenchom, L. A1 - Polte, Jörg A1 - Emmerling, Franziska A1 - Smarsly, B.M. A1 - Kraehnert, R. T1 - New triblock copolymer templates, PEO-PB-PEO, for the synthesis of titania films with controlles mesopore size, wall thickness, and bimodal porosity N2 - The synthesis and properties of a series of new structure-directing triblock copolymers with PEO-PB-PEO structure (PEO = poly(ethylene oxide) and PB = polybutadiene) and their application as superior pore-templates for the preparation of mesoporous titania coatings are reported. Starting from either TiCl4 or from preformed TiO2 nanocrystalline building blocks, mesoporous crystalline titanium oxide films with a significant degree of mesoscopic ordered pores are derived, and the pore size can be controlled by the molecular mass of the template polymer. Moreover, the triblock copolymers form stable micelles already at very low concentration, i.e., prior to solvent evaporation during the evaporation-induced self-assembly process (EISA). Consequently, the thickness of pore walls can be controlled independently of pore size by changing the polymer-to-precursor ratio. Thus, unprecedented control of wall thickness in the structure of mesoporous oxide coatings is achieved. In addition, the micelle formation of the new template polymers is sufficiently distinct from that of typical commercial PPO-PEO-PPO polymers (Pluronics; PPO = poly(propylene oxide)), so that a combination of both polymers facilitates bimodal porosity via dual micelle templating. KW - Mesoporous materials KW - Titanium oxide films KW - Anatase nanoparticles KW - PEO-PB-PEO KW - Dual templating PY - 2012 DO - https://doi.org/10.1002/smll.201101520 SN - 1613-6810 SN - 1613-6829 VL - 8 IS - 2 SP - 298 EP - 309 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-26277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -