TY - RPRT A1 - Ebert, H.-P. A1 - Reichenauer, G. A1 - Brandt, R. A1 - Braxmeier, S. A1 - Bauer, T. A1 - Tamme, R. A1 - Langer, W. A1 - Hudler, B. A1 - Christ, M. A1 - Sextl, G. A1 - Müller, G. A1 - Helbig, U. A1 - Houbertz, R. A1 - Voigt, W. A1 - Schmidt, H. A1 - Zehl, T. A1 - Mach, Reinhard A1 - Maneck, Heinz-Eberhard A1 - Meyer-Plath, Asmus A1 - Oleszak, Franz A1 - Keuper, M. A1 - Reisert, M. A1 - Burkhardt, H. A1 - Günther, E. A1 - Mehling, H. T1 - Netzwerk zur Überwindung grundlegender Probleme bei der Entwicklung hocheffizienter Latentwärmespeicher auf Basis anorganischer Speichermaterialien KW - Latentwärmespeicher KW - Materialforschung KW - Plasmaverfahren KW - Graphit PY - 2008 SN - 978-3-00-024699-9 SP - 1 EP - 217 CY - Würzburg AN - OPUS4-18273 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anzt, H. A1 - Bach, F. A1 - Druskat, S. A1 - Löffler, F. A1 - Loewe, A. A1 - Renard, B. Y. A1 - Seemann, G. A1 - Struck, A. A1 - Achhammer, E. A1 - Aggarwal, P. A1 - Appel, F. A1 - Bader, M. A1 - Brusch, L. A1 - Busse, C. A1 - Chourdakis, G. A1 - Dabrowski, P. W. A1 - Ebert, P. A1 - Flemisch, B. A1 - Friedl, S. A1 - Fritzsch, B. A1 - Funk, M. D. A1 - Gast, V. A1 - Goth, F. A1 - Grad, J. A1 - Hegewald, J. A1 - Hermann, S. A1 - Hohmann, F. A1 - Janosch, S. A1 - Kutra, D. A1 - Linxweiler, J. A1 - Muth, Thilo A1 - Peters-Kottig, W. A1 - Rack, F. A1 - Raters, F. H. C. A1 - Rave, S. A1 - Reina, G. A1 - Reißig, M. A1 - Ropinski, T. A1 - Schaarschmidt, J. A1 - Seibold, H. A1 - Thiele, J. P. A1 - Uekermann, B. A1 - Unger, S. A1 - Weeber, R. T1 - An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action N2 - Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin. KW - Research Software KW - Sustainable Software Development KW - Academic Software KW - Software Infrastructure KW - Software Training KW - Software Licensing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522029 DO - https://doi.org/10.12688/f1000research.23224.2 VL - 9 SP - 1 EP - 35 AN - OPUS4-52202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grunwald, M. A. A1 - Hagenlocher, S. E. A1 - Turkanovic, L. A1 - Bauch, S. M. A1 - Wachsmann, S. B. A1 - Altevogt, L. A. A1 - Ebert, M. A1 - Knöller, J. A. A1 - Raab, A. R. A1 - Schulz, F. A1 - Kolmangadi, Mohamed A. A1 - Zens, A. A1 - Huber, P. A1 - Schönhals, Andreas A1 - Bilitiewski, U. A1 - Laschat, S. T1 - Does thermotropic liquid crystalline self-assembly control biological activity in amphiphilic amino acids? – tyrosine ILCs as a case study N2 - Amphiphilic amino acids represent promising scaffolds for biologically active soft matter. In order to understand the bulk self-assembly of amphiphilic amino acids into thermotropic liquid crystalline phases and their biological properties a series of tyrosine ionic liquid crystals (ILCs) was synthesized, carrying a benzoate unit with 0–3 alkoxy chains at the tyrosine unit and a cationic guanidinium head group. Investigation of the mesomorphic properties by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction (WAXS, SAXS) revealed smectic A bilayers (SmAd) for ILCs with 4-alkoxy- and 3,4-dialkoxybenzoates, whereas ILCs with 3,4,5-trisalkoxybenzoates showed hexagonal columnar mesophases (Colh ), while different counterions had only a minor influence. Dielectric measurements revealed a slightly higher dipole moment of non-mesomorphic tyrosine-benzoates as compared to their mesomorphic counterparts. The absence of lipophilic side chains on the benzoate unit was important for the biological activity. Thus, non-mesomorphic tyrosine benzoates and crown ether benzoates devoid of additional side chains at the benzoate unit displayed the highest cytotoxicities (against L929 mouse fibroblast cell line) and antimicrobial activity (against Escherichia coli DTolC and Staphylococcus aureus) and promising selectivity ratio in favour of antimicrobial activity. KW - Liquid Crystals PY - 2023 DO - https://doi.org/10.1039/d3cp00485f SN - 1463-9076 VL - 25 IS - 26 SP - 17639 EP - 17656 PB - RCS AN - OPUS4-57796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Noble, J.E. A1 - Wang, L. A1 - Cerasoli, E. A1 - Knight, A.E. A1 - Porter, R.A. A1 - Gray, E. A1 - Howe, C. A1 - Hannes, E. A1 - Corbisier, P. A1 - Wang, J. A1 - Wu, L. A1 - Altieri, I. A1 - Patriarca, M. A1 - Hoffmann, Angelika A1 - Resch-Genger, Ute A1 - Ebert, B. A1 - Voigt, Jan A1 - Shigeri, Y. A1 - Vonsky, M.S. A1 - Konopelko, L.A. A1 - Gaigalas, A.K. A1 - Bailey, M. J. A. T1 - An international comparability study to determine the sources of uncertainty associated with a non-competitive sandwich fluorescent ELISA KW - ELISA KW - Fluorescence KW - Interferon KW - Uncertainty KW - Round Robin KW - Immunoassay KW - Quality assurance KW - Fluorescein PY - 2008 SN - 1434-6621 SN - 1437-8523 VL - 46 IS - 7 SP - 1033 EP - 1045 PB - De Gruyter CY - Berlin AN - OPUS4-18283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pogány, A. A1 - Balslev-Harder, D. A1 - Braban, Ch. F. A1 - Cassidy, N. A1 - Ebert, V. A1 - Ferracci, V. A1 - Hieta, T. A1 - Leuenberger, D. A1 - Martin, N. A. A1 - Pascale, C. A1 - Peltola, J. A1 - Persijn, S. A1 - Tiebe, Carlo A1 - Twigg, M. M. A1 - Vaittinen, Olavi A1 - van Wijk, J. A1 - Wirtz, K. A1 - Niederhauser, B. T1 - A metrological approach to improve accuracy and reliability of ammonia measurements in ambient air N2 - The environmental impacts of ammonia (NH3) in ambient air have become more evident in the recent decades, leading to intensifying research in this field. A number of novel analytical techniques and monitoring instruments have been developed, and the quality and availability of reference gas mixtures used for the calibration of measuring instruments has also increased significantly. However, recent inter-comparison measurements show significant discrepancies, indicating that the majority of the newly developed devices and reference materials require further thorough validation. There is a clear need for more intensive metrological research focusing on quality assurance, intercomparability and validations. MetNH3 (Metrology for ammonia in ambient air) is a three-year project within the framework of the European Metrology Research Programme (EMRP), which aims to bring metrological traceability to ambient ammonia measurements in the 0.5–500 nmol mol−1 amount fraction range. This is addressed by working in three areas: (1) improving accuracy and stability of static and dynamic reference gas mixtures, (2) developing an optical transfer standard and (3) establishing the link between high-accuracy metrological standards and field measurements. In this article we describe the concept, aims and first results of the project. KW - Ammonia in ambient air KW - Traceability KW - Reference gas standards KW - Optical transfer standard KW - Validation and testing infrastructure PY - 2016 DO - https://doi.org/10.1088/0957-0233/27/11/115012 SN - 0957-0233 VL - 27 IS - 11 SP - 115012 EP - 115026 PB - IOP Publishing Ltd. AN - OPUS4-39130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scharlach, C. A1 - Müller, Larissa A1 - Wagner, S. A1 - Kobayashi, Y. A1 - Kratz, H. A1 - Ebert, M. A1 - Jakubowski, Norbert A1 - Schellenberger, E. T1 - LA-ICP-MS allows quantitative microscopy of europium-doped iron oxide nanoparticles and is a possible alternative to ambiguous Prussian blue iron staining N2 - The development of iron oxide nanoparticles for biomedical applications requires accurate histological evaluation. Prussian blue iron staining is widely used but may be unspecific when tissues contain substantial endogenous iron. Here we tested whether microscopy by laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) is sensitive enough to analyze accumulation of very small iron oxide particles (VSOP) doped with europium in tissue sections. KW - Atherosclerotic plaques KW - LA-ICP-MS microscopy KW - Quantification KW - Element microscopy KW - Histology PY - 2016 DO - https://doi.org/10.1166/jbn.2016.2230 SN - 1550-7033 SN - 1550-7041 VL - 12 IS - 5 SP - 1001 EP - 1010 AN - OPUS4-36189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ebert-Spiegel, M. A1 - Goecke, S.-F. A1 - Rethmeier, Michael T1 - Efficient gap filling in MAG welding using optical sensors N2 - MAG welding is widely used for thin sheet metal applications such as car body structures due to its ability to tolerate a fair amount of deviation of the components from the ideal shape. In MAG welding, the process window is sufficiently large to accommodate the expected component tolerances. In practice, however, quality control is an issue since most welds are produced with parameters outside of the optimum range, especially in the case of automated MAG welding. To ensure best performance, a robust real-time control law is needed that adapts critical process parameters to the changing conditions, most notably the variation in gap height. Here, the gap-dependent adaptive control algorithm for the deposition of filler material and the related energy input comes into play. With an optical sensor that is mounted in front of the torch, the system measures the actual position of the two components in real-time during the entire welding process and the controller adapts the relevant parameters accordingly using a dynamic process model. This optimization ensures that only the required filler material is used and the associated energy input is tightly controlled to assure best quality even in a fully automated welding process. KW - MAG welding KW - Sheet KW - Robots KW - Automation KW - Sensors KW - Adaptive control PY - 2014 DO - https://doi.org/10.1007/s40194-014-0145-8 SN - 0043-2288 SN - 1878-6669 VL - 58 IS - 5 SP - 637 EP - 647 PB - Springer CY - Oxford AN - OPUS4-31438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ebert-Spiegel, M. A1 - Goecke, S.-F. A1 - Rethmeier, Michael T1 - Possibilities for compensating a higher heat input, in particular by the torch offset relative to the top sheet at the fillet weld on a lap joint N2 - This paper deals with the use of an adaptive control system for compensating the variation in the gap height of a fillet welded lap joint. Gap bridging requires the input of additional filler material and is related to an increased energy input. Hence, the aim was a compensation of the effect of an increased heat input, in order to maintain the weld pool and excessive penetration, which can prevent consequently root reinforcement and burn-through. The findings achieved in this work show possibilities for a real-time controlled adjustments of the welding parameters in automated metal active gas (MAG) welding for compensating a higher heat input, in particular by means of the torch offset relative to the top sheet at the fillet weld on a lap joint. KW - MAG welding KW - Adaptive control KW - High strength steels KW - Gap KW - Energy input KW - Mathematical models PY - 2015 DO - https://doi.org/10.1007/s40194-015-0220-9 SN - 0043-2288 SN - 1878-6669 VL - 59 IS - 3 SP - 443 EP - 453 PB - Springer CY - Oxford AN - OPUS4-33079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -