TY - JOUR A1 - Seuthe, T. A1 - Höfner, M. A1 - Reinhardt, F. A1 - Tsai, W.J. A1 - Bonse, Jörn A1 - Eberstein, M. A1 - Eichler, H.J. A1 - Grehn, M. T1 - Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy N2 - The effects of femtosecond laser pulse irradiation on the glass structure of alkaline silicate glasses were investigated by x-ray absorption near edge structure spectroscopy using the beamline of the Physikalisch-Technische Bundesanstalt at the electron synchrotron BESSY II in Berlin (Germany) by analyzing the magnesium Κ-edge absorption peak for different laser fluences. The application of fluences above the material modification threshold (2.1 J/cm²) leads to a characteristic shift of ~1.0 eV in the Κ-edge revealing a reduced (~3%) mean magnesium bond length to the ligated oxygen ions (Mg-O) along with a reduced average coordination number of the Mg ions. KW - Glass KW - Glass structure KW - Laser beam effects KW - Magnesium compounds KW - Potassium compounds KW - XANES PY - 2012 U6 - https://doi.org/10.1063/1.4723718 SN - 0003-6951 SN - 1077-3118 VL - 100 IS - 22 SP - 224101-1 EP - 224101-3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-25918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grehn, M. A1 - Reinhardt, F. A1 - Bonse, Jörn A1 - Eberstein, M. A1 - Seuthe, T. T1 - Response to "comment on 'femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy'" KW - Bond lengths KW - Glass KW - High-speed optical techniques KW - Magnesium compounds KW - Monochromators KW - Potassium compounds KW - Silicon compounds KW - XANES PY - 2013 U6 - https://doi.org/10.1063/1.4804148 SN - 0003-6951 SN - 1077-3118 VL - 102 SP - 196102-1 - 196102-2 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-28520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seuthe, T. A1 - Grehn, M. A1 - Mermillod-Blondin, A. A1 - Bonse, Jörn A1 - Eberstein, M. T1 - Compositional dependent response of silica-based glasses after femtosecond laser pulse irradiation N2 - Femtosecond laser pulse irradiation of inorganic glasses allows a selective modification of the optical properties with very high precision. This results in the possibility for the production of three-dimensional functional optical elements in the interior of glass materials, such as optical data storage, waveguide writing, etc. The influence of the chemical glass composition to the response upon ultrashort laser irradiation has not been studied systematically. For that, simple silicabased model glasses composed of systematically varying alkaline- and earth-alkaline components were prepared, irradiated on the surface and in the volume with single fs-laser pulses (~130 fs, 800 nm), and were subsequently analyzed by means of micro-Raman spectroscopy and quantitative phase contrast microscopy in order to account for changes in the glass structure and for alterations of the optical refractive index, respectively. The Raman spectroscopic studies of the laser-irradiated spots revealed no change in the average binding configuration (the so called Q-structure), but local changes of bond-angles and bond-lengths within the glass structure structure. Those changes are explained by structural relaxation of the glass network due to densification caused by a transient laser-induced plasma generation and the following shock wave and other thermal phenomena. Glasses with a low amount of network modifiers show changes in the Si-O network while glasses with a high amount of network modifiers react primarily via variation of the nonbridging oxygen ions. The results are discussed in terms of possible structural response mechanisms and conclusions are outlined regarding glass compositions with technical suitability for fs-laser modifications. T2 - Laser-induced damage in optical materials CY - Boulder, Colorado, USA DA - 2013-09-22 KW - Femtosecond laser modifications KW - Raman spectroscopy KW - Glass KW - Femtosecond phenomena KW - Networks KW - Silica KW - Laser irradiation KW - Lasers KW - Micro raman spectroscopy KW - Microscopy KW - Optical components KW - Optical storage PY - 2013 U6 - https://doi.org/10.1117/12.2028713 N1 - Serientitel: SPIE proceedings series – Series title: SPIE proceedings series VL - 8885 SP - 1 EP - 8(?) AN - OPUS4-29539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -