TY - JOUR A1 - Joseph, A. A1 - Bernardes, C. E. S. A1 - Druzhinina, A. I. A1 - Varushchenko, R. M. A1 - Nguyen, Thi Yen A1 - Emmerling, Franziska A1 - Yuan, L. A1 - Dupray, V. A1 - Coquerel, G. A1 - Minas da Piedade, M. E. T1 - Polymorphic phase transition in 4′-hydroxyacetophenone: Equilibrium temperature, kinetic barrier, and the relative stability of Z′=1 and Z′=2 forms JF - Crystal Growth & Design N2 - Particularly relevant in the context of polymorphism is understanding how structural, thermodynamic, and kinetic factors dictate the stability domains of polymorphs, their tendency to interconvert through phase transitions, or their possibility to exist in metastable states. These three aspects were investigated here for two 4′-hydroxyacetophenone (HAP) polymorphs, differing in crystal system, space group, and number and conformation of molecules in the asymmetric unit. The results led to a ΔfGm°-T phase diagram highlighting the enantiotropic nature of the system and the fact that the Z′=1 polymorph is not necessarily more stable than its Z′=2 counterpart. It was also shown that the form II → form I transition is entropy driven and is likely to occur through a nucleation and growth mechanism, which does not involve intermediate phases, and is characterized by a high activation energy. Finally, although it has been noted that conflicts between hydrogen bond formation and close packing are usually behind exceptions from the hypothesis of Z′=1 forms being more stable than their higher Z′ analogues, in this case, the HAP polymorph with stronger hydrogen bonds (Z′=2) is also the one with higher density. KW - Polymorphism KW - Polymorphic transition KW - 4'-hydroxyacetophenone PY - 2017 DO - https://doi.org/10.1021/acs.cgd.6b01876 SN - 1528-7483 SN - 1528-7505 VL - 17 IS - 4 SP - 1918 EP - 1932 PB - ACS AN - OPUS4-40167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Simões, R. G. A1 - Bernardes, C. E. S. A1 - Ramisch, Yen A1 - Bienert, Ralf A1 - Röllig, Matthias A1 - Emmerling, Franziska A1 - Minas da Piedade, M. E. T1 - Real-Time In situ XRD Study of Simvastatin Crystallization in Levitated Droplets JF - Crystal Growth & Design N2 - Simvastatin (SV) is an important active pharmaceutical ingredient (API) for treatment of hyperlipidemias, which is known to exist in different crystalline and amorphous phases. It is, therefore, an interesting model to investigate how the outcome of evaporative crystallization in the contactless environment of an acoustically levitated droplet may be influenced by key experimental conditions, such as temperature, solvent properties (e.g., polarity and hygroscopicity), and dynamics of the evaporation process. Here, we describe a real-time and in situ study of simvastatin evaporative crystallization from droplets of three solvents that differ in volatility, polarity, and protic character (acetone, ethanol, and ethyl acetate). The droplet monitorization relied on synchrotron X-ray diffraction (XRD), Raman spectroscopy, imaging, and thermographic analysis. A pronounced solvent-dependent behavior was observed. In ethanol, a simvastatin amorphous gel-like material was produced, which showed no tendency for crystallization over time; in ethyl acetate, a glassy material was formed, which crystallized on storage over a two-week period to yield simvastatin form I; and in acetone, form I crystallized upon solvent evaporation without any evident presence of a stable amorphous intermediate. The XRD and Raman results further suggested that the persistent amorphous phase obtained from ethanol and the amorphous precrystallization intermediate formed in ethyl acetate were similar. Thermographic analysis indicated that the evaporation process was accompanied by a considerable temperature decrease of the droplet surface, whose magnitude and rate correlated with the solvent volatility (acetone > ethyl acetate > ethanol). The combined thermographic and XRD results also suggested that, as the cooling effect increased, so did the amount of residual water (most likely captured from the atmosphere) remaining in the droplet after the organic solvent was lost. Finally, the interpretation of the water fingerprint in the XRD time profiles was aided by molecular dynamics simulations, which also provided insights into the possible role of H2O as an antisolvent that facilitates simvastatin crystallization. KW - Simvastatin KW - In-situ KW - API KW - Crystallization PY - 2021 DO - https://doi.org/10.1021/acs.cgd.1c00509 SN - 1528-7483 VL - 21 IS - 8 SP - 4665 EP - 4673 PB - ACS Publications AN - OPUS4-53663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simões, R. G. A1 - Melo, P. L. T. A1 - Bernardes, C. E. S. A1 - Heilmann, Maria A1 - Emmerling, Franziska A1 - Minas da Piedade, M. E. T1 - Linking Aggregation in Solution, Solvation, and Solubility of Simvastatin: An Experimental and MD Simulation Study JF - Crystal Growth & Design N2 - The solubility is generally thought to be higher if the solvent effectively solvates solute molecules that are well-separated from each other. The present work suggests, however, that the formation of large solute aggregates does not necessarily imply less effective solvation and lower solubility. Measurements of the solubility of simvastatin (one of the most commonly prescribed antihyperlipidemic drugs) in three solvents with different polarities and protic characters, led to the solubility order acetone > ethyl acetate > ethanol, in the full temperature range covered by the experiments (283–308 K). An analysis of the structures of the different solutions on the basis of molecular dynamics simulation results indicated that this trend seems to be determined by a balance between the solute tendency toward aggregation and the ability of the solvent to efficiently solvate it, by integrating the cluster structures, regardless of their size, and effectively establishing solvent–solute interactions. KW - Simvastatin KW - Solubility KW - API KW - Aggregation PY - 2021 DO - https://doi.org/10.1021/acs.cgd.0c01325 VL - 21 IS - 1 SP - 544 EP - 551 AN - OPUS4-52185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Feiler, Torvid A1 - Ali, N. Z. A1 - Minas da Piedade, M. E. A1 - Emmerling, Franziska T1 - Mechanistic Insights into a Sustainable Mechanochemical Synthesis of Ettringite JF - ChemistryOpen N2 - Mechanochemistry offers an environmentally benign and facile synthesis method for a variety of cement paste constituents. In addition, these methods can be used to selectively tune the properties of cement components. The mineral ettringite is an important component of cementitious materials and has additional technological potential due to its ion exchange properties. Synthesis of ettringite via mechanochemistry is an environmentally friendly alternative to conventional wet-chemical synthesis established in industry. This contribution explores the mechanism of a two-step mechanochemical synthesis of ettringite, which was previously found to greatly improve the reaction conversion as compared with one-pot synthesis. The crystallinity of Al(OH)3 was found to decrease during the first stage of this mechanochemical synthesis. This was correlated to a significant decrease in the particle size of Al(OH)3 in this stage. No other significant changes were found for the other components, suggesting that mechanochemical activation of Al(OH)3 is responsible for the enhanced formation of ettringite by the two-step approach. The environmentally friendly approach developed for ettringite synthesis offers a versatile synthetic strategy, which can be applied to synthesise further cementitious materials. KW - Ettringite KW - Mechanochemistry KW - Sustainability KW - X-ray diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489172 DO - https://doi.org/10.1002/open.201900215 VL - 8 IS - 7 SP - 1012 EP - 1019 PB - ChemPubSoc AN - OPUS4-48917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernardes, C. E. S. A1 - Feliciano, I.O. A1 - Naese, Christoph A1 - Emmerling, Franziska A1 - Minas da Piedade, M. T1 - Energetics of dehydroepiandrosterone polymorphs I and II from solution and drop-sublimation Calvet microcalorimetry measurements JF - The Journal of Chemical Thermodynamics N2 - The lattice enthalpies and monotropic relationship of two dehydroepiandrosterone (DEHA) polymorphs (forms I and II) were evaluated through a combination of differential scanning calorimetry (DSC), isothermal solution microcalorimetry, and drop-sublimation Calvet microcalorimetry experiments. The standard molar enthalpy of transition between both forms was determined as ΔtrsHom (II→I, 298.15 K) = - 0.90 ± 0.07 kJ mol-1 and ΔtrsHom (II→I, 417.8 K) = - 1.7 ± 1.0 kJ mol- 1, from measurements of standard molar enthalpies of solution in dimethyl sulfoxide and enthalpies of fusion, respectively. Drop-sublimation Calvet microcalorimetry experiments on form I led to ΔsubHom (cr I, 298.15 K) = 132.0±3.3 kJ mol - 1. This result, when combined with the more precise ΔtrsHom (II→I) value obtained by solution calorimetry, afforded ΔsubHom (cr II, 298.15 K) = 131.1±3.3 kJ mol - 1. The overall data indicate that on enthalpic grounds form I is more stable than form II from 298.15 K up to fusion. This conclusion, and the fact that DSC experiments indicated that form I has also a considerably higher temperature fusion, namely, Tfus(cr I)= 422.5±0.2 K and Tfus(cr II) = 413.1±0.2 K, suggest that the two polymorphs are monotropically related. KW - Calorimetry KW - Polymorphism KW - Enthalpy of solution KW - Enthalpy of sublimation KW - Thermochemistry KW - Lattice enthalpy PY - 2023 DO - https://doi.org/10.1016/j.jct.2023.107137 SN - 0021-9614 SN - 1096-3626 VL - 186 SP - 1 EP - 7 PB - Elsevier AN - OPUS4-58418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -