TY - RPRT A1 - Beck, Uwe A1 - Stockmann, Jörg M. T1 - AiF Projekt GmbH, KONTRAST – schnell, sicher, sichtbar N2 - Das Projekt KONTRAST adressiert die Qualitätskontrolle (QC) zur Erfassung nano- und mikroskaliger Belegung/Degradation mittels abbildender Ellipsometrie (IE). Das BAM-Teilvorhaben beinhaltet das Screening von Benchmark-Materialsystemen und die Validierung von Messstrategien. Im Ergebnis erfolgte eine Fokussierung auf das im Vergleich zur off Null Ellipsometrie (ONE) aussichtereichere Verfahren der referenzkompensierten Ellipsometrie(RKE), das marktstrategisch in RSE (referenced spectral ellipsometry) umbenannt wurde. Alle Materialsysteme der BAM-Unterauftragnehmer konnten mit IE visualisiert werden, mit dem RSE-System in wesentlich kürzeren Zeiten, auf größeren Flächen, bei vergleichbarer Empfindlichkeit und Auflösung, Komplementärverfahren waren für den schnellen Nachweis nano- und mikroskaliger Belegung nicht konkurrenzfähig, wobei zusätzliche Materialsysteme mit niedrigem Kontrast (SnO:Ni auf Glas bzw. Cr auf Chromstahl) in der BAM hergestellt wurden. Die öffentliche Präsentation des RSE-Prototyps erfolgte auf der ICSE-7 2016 mit der Publikation 2017 in Applied Surface Science. KW - Abbildende Ellipsometrie (IE) KW - Imaging Null Ellipsometrie (INE) KW - Referenced Spectral Ellipsometry (RSE) KW - Oberflächenverunreinigungen KW - Visualisierung bei geringem Kontrast PY - 2017 N1 - Das Dokument unterliegt der Vertraulichkeit und kann nicht zugänglich gemacht werden Projektlaufzeit: 01.10.2014 bis 28.08.2017 The document is subject to confidentiality restrictions and cannot be made accessible Project runtime: 01.10.2014 to 28.08.2017 SP - 1 EP - 16 AN - OPUS4-50420 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruhe, L. A1 - Ickert, Stefanie A1 - Hochkirch, U. A1 - Hofmann, J. A1 - Beck, S. A1 - Thomale, J. A1 - Linscheid, M. W. T1 - Comprehensive molecular characterization of a cisplatin-specific monoclonal antibody JF - Molecular Pharmaceutics N2 - Despite their immense and rapidly increasing importance as analytical tools or therapeutic drugs, the detailed structural features of particular monoclonal antibodies are widely unknown. Here, an antibody already in use for diagnostic purposes and for molecular dosimetry studies in cancer therapy with very high affinity and specificity for cisplatin-induced DNA modifications was studied extensively. The molecular structure and modifications as well as the antigen specificity were investigated mainly by mass spectrometry. Using nano electrospray ionization mass spectrometry, it was possible to characterize the antibody in its native state. Tandem-MS experiments not only revealed specific fragments but also gave information on the molecular structure. The detailed primary structure was further elucidated by proteolytic treatment with a selection of enzymes and high resolution tandem-MS. The data were validated by comparison with known antibody sequences. Then, the complex glycan structures bound to the antibody were characterized in all detail. The Fc-bound oligosaccharides were released enzymatically and studied by matrix-assisted laser desorption/ionization mass spectrometry. Overall 16 different major glycan structures were identified. The binding specificity of the antibody was investigated by applying synthetic single and double stranded DNA oligomers harboring distinct Pt adducts. The antibody− antigen complexes were analyzed by mass spectrometry under native conditions. The stability of the complex with double stranded DNA was also investigated. KW - Antibody KW - Native MS KW - Cisplatin KW - PTM PY - 2017 DO - https://doi.org/10.1021/acs.molpharmaceut.7b00575 SN - 1543-8384 SN - 1543-8392 VL - 14 IS - 12 SP - 4454 EP - 4461 AN - OPUS4-43997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Negendank, Detlef A1 - Lohse, Volkmar A1 - Kormunda, M. A1 - Esser, N. T1 - Dependence of the optical constants and the performance in the SPREE gas measurement on the thickness of doped tin oxide over coatings JF - Applied Surface Science N2 - In this study, thickness related changes of the optical properties of doped tin oxide were studied. Two different sets of samples were prepared. The first set was doped with iron or nickel on silicon substrate with thicknesses of 29–56 nm, the second was iron doped on gold/glass substrate with 1.6–6.3 nm. The optical constants were determined by using spectral ellipsometry (SE) followed by modelling of the dielectric function with an oscillator model using Gaussian peaks. The analysis of the optical constants shows a dependence of the refraction and the absorption on the thickness of the doped tin oxide coating. In addition to the tin oxide absorption in the UV, one additional absorption peak was found in the near-IR/red which is related to plasmonic effects due to the doping. This peak shifts from the near-IR to the red part of the visible spectrum and becomes stronger by reducing the thickness, probably due to the formation of metal nanoparticles in this layer. These results were found for two different sets of samples by using the same optical model. Afterwards the second sample set was tested in the Surface Plasmon Resonance Enhanced Ellipsometric (SPREE) gas measurement with CO gas. It was found that the thickness has significant influence on the sensitivity and thus the adsorption of the CO gas. By increasing the thickness from 1.6 nm to 5.1 nm, the sensing ability is enhanced due to a higher coverage of the surface with the over coating. This is explained by the high affinity of CO molecules to the incorporated Fe-nanoparticles in the tin oxide coating. By increasing the thickness further to 6.3 nm, the sensing ability drops because the layer disturbs the SPR sensing effect too much. T2 - 7th International Conference on Spectroscopic Ellipsometry (ICSE-7) DA - 06.06.2016 KW - Surface plasmon resonance KW - Spectroscopic ellipsometry KW - Doped tin oxide KW - Gas sensing KW - Plasmonic absorption PY - 2017 DO - https://doi.org/10.1016/j.apsusc.2016.11.188 SN - 0169-4332 VL - 421, Teil B SP - 480 EP - 486 PB - Elsevier B.V. AN - OPUS4-42692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kingelhöffer, Hellmuth A1 - Affeldt, E. E. A1 - Bache, M. A1 - Bartsch, M. A1 - Beck, T. A1 - Christ, H. J. A1 - Fedelich, Bernard A1 - Hähner, P. A1 - Holdsworth, S. R. A1 - Lang, K.-H. A1 - McGaw, M. A1 - Olbricht, Jürgen A1 - Remy, L. A1 - Skrotzki, Birgit A1 - Stekovich, S. T1 - Editorial - Special issue: Recent developments in thermo-mechanical fatigue JF - International journal of fatigue N2 - Components in the Aerospace, Power and Automotive engineering sectors are frequently subjected to cyclic stresses induced by thermal fluctuations and mechanical loads. For the design of such components, reliable material property data are required which need to be acquired using well accepted and reproducible test procedures for thermo-mechanical fatigue (TMF) loading. There is limited availability of proven TMF data indicating there is need for further research and testing. The TMF behaviour of materials is often desired to be simulated in models which describe the cyclic stress-strain behaviour, the fatigue life and the cyclic crack growth behaviour. There is a continuous need for the development and amendment of such models. Models can be validated by using materials in industrial applications which are subjected to TMF loading. The 3rd Workshop on Thermo-Mechanical Fatigue was held on 27–29 April 2016 at BAM, Berlin, Germany. The workshop was attended by 90 attendees coming from 17 countries in the world. 38 presentations including five poster presentations were held. The following topics were covered by the workshop: – TMF of materials coated with Thermal Barrier Coatings. – Thermal Gradient Mechanical Fatigue. – TMF crack growth. – TMF + High Cycle Fatigue. – TMF Modelling and Lifetime Prediction. – TMF Properties of steels, cast iron, Al-, Mg- and Ni-alloys – Advanced TMF Testing Techniques. – Industrial Applications. A panel discussion was held regarding the present state of TMF testing standards (ISO and ASTM) and their potential for improvement. The discussion and contributions were summarized and forwarded to the standard committees. The 3rd TMF-Workshop ensured the continuation of international exchange of knowledge providing a forum to present and discuss all recent developments in the field of thermo-mechanical fatigue. The current special issue publishes eleven selected papers of the 3rd TMF-Workshop 2016. The papers were peer reviewed by a number of experts in the Thermo-Mechanical Fatigue sector. I hope you will enjoy reading papers of this special issue. T2 - 3rd International Workshop on Thermo-Mechanical Fatigue (TMF-Workshop 2016) CY - Berlin, Germany DA - 27.04.2016 KW - Fatigue damage KW - Thermo-mechanical fatigue KW - Fatigue life time KW - Life time prediction KW - TMF PY - 2017 DO - https://doi.org/10.1016/j.ijfatigue.2017.02.002 SN - 0142-1123 VL - 99 IS - 2 SP - 215 PB - Elsevier CY - Oxford AN - OPUS4-40895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hiratsuka, M. A1 - Spindler, Ch. A1 - Ohtake, N. A1 - Hertwig, Andreas A1 - Becker, J. A1 - Gäbler, J. A1 - Neubert, Th. A1 - Vergöhl, M. A1 - Winkler, J. A1 - Eypert, C. T1 - Interlaboratory comparison: optical property classification of carbon-based films by ellipsometry N2 - The paper addresses the “INTERLABORATORY COMPARISON: OPTICAL PROPERTY CLASSIFICATION OF CARBON-BASED FILMS BY ELLIPSOMETRY” and the following points are discussed in more detail: Established classification for mechanical properties, Complementary classification for optical properties, Ellipsometry for determination of optical constants n-k plane as material fingerprint, Samples, participants & set-ups (samples: Japan, participants: Japan, Germany, France, set-ups: Japan, Germany, USA) and Results of interlaboratory comparison: thickness, n & k. T2 - ISO TC 107 Meeting Tokyo CY - Tokio, Japan DA - 17.01 2017 KW - Interlaboratory Comparison KW - Optical Property KW - Carbon-based Films KW - Ellipsometry PY - 2017 AN - OPUS4-39028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Lohse, V. A1 - Negendank, D. A1 - Kormunda, M. A1 - Esser, N. T1 - Thin SnOx films for surface plasmon resonance enhanced ellipsometric gas sensing (SPREE) JF - Beilstein Journal of Nanotechnology N2 - Background: Gas sensors are very important in several fields like gas monitoring, safety and environmental applications. In this approach, a new gas sensing concept is investigated which combines the powerful adsorption probability of metal oxide conductive sensors (MOS) with an optical ellipsometric readout. This concept Shows promising results to solve the problems of cross sensitivity of the MOS concept. Results: Undoped tin oxide (SnOx) and iron doped tin oxide (Fe:SnOx) thin add-on films were prepared by magnetron sputtering on the top of the actual surface plasmon resonance (SPR) sensing gold layer. The films were tested for their sensitivity to several gas species in the surface plasmon resonance enhanced (SPREE) gas measurement. It was found that the undoped tin oxide (SnOx) shows higher sensitivities to propane (C3H8) then to carbon monoxide (CO). By using Fe:SnOx, this relation is inverted. This behavior was explained by a change of the amount of binding sites for CO in the layer due to this iron doping. For hydrogen (H2) no such relation was found but the sensing ability was identical for both layer materials. This observation was related to a different sensing mechanism for H2 which is driven by the Diffusion into the layer instead of adsorption on the surface. Conclusion: The gas sensing selectivity can be enhanced by tuning the properties of the thin film overcoating. A relation of the binding sites in the doped and undoped SnOx films and the gas sensing abilities for CO and C3H8 was found. This could open the path for optimized gas sensing devices with different coated SPREE sensors. KW - Doped tin oxide KW - Ellipsometry KW - Gas sensing KW - Surface plasmon KW - Resonance KW - Thin films KW - Transparent conductive oxides PY - 2017 DO - https://doi.org/10.3762/bjnano.8.56 SN - 2190-4286 VL - 8 SP - 522 EP - 529 AN - OPUS4-39391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -