TY - JOUR A1 - Klingelhöffer, Hellmuth A1 - Affeldt, E. E. A1 - Bache, M. A1 - Bartsch, M. A1 - Beck, T. A1 - Christ, H. J. A1 - Fedelich, Bernard A1 - Hähner, P. A1 - Holdsworth, S. R. A1 - Lang, K.-H. A1 - McGaw, M. A1 - Olbricht, Jürgen A1 - Remy, L. A1 - Skrotzki, Birgit A1 - Stekovich, S. T1 - Editorial - Special issue: Recent developments in thermo-mechanical fatigue N2 - Components in the Aerospace, Power and Automotive engineering sectors are frequently subjected to cyclic stresses induced by thermal fluctuations and mechanical loads. For the design of such components, reliable material property data are required which need to be acquired using well accepted and reproducible test procedures for thermo-mechanical fatigue (TMF) loading. There is limited availability of proven TMF data indicating there is need for further research and testing. The TMF behaviour of materials is often desired to be simulated in models which describe the cyclic stress-strain behaviour, the fatigue life and the cyclic crack growth behaviour. There is a continuous need for the development and amendment of such models. Models can be validated by using materials in industrial applications which are subjected to TMF loading. The 3rd Workshop on Thermo-Mechanical Fatigue was held on 27–29 April 2016 at BAM, Berlin, Germany. The workshop was attended by 90 attendees coming from 17 countries in the world. 38 presentations including five poster presentations were held. The following topics were covered by the workshop: – TMF of materials coated with Thermal Barrier Coatings. – Thermal Gradient Mechanical Fatigue. – TMF crack growth. – TMF + High Cycle Fatigue. – TMF Modelling and Lifetime Prediction. – TMF Properties of steels, cast iron, Al-, Mg- and Ni-alloys – Advanced TMF Testing Techniques. – Industrial Applications. A panel discussion was held regarding the present state of TMF testing standards (ISO and ASTM) and their potential for improvement. The discussion and contributions were summarized and forwarded to the standard committees. The 3rd TMF-Workshop ensured the continuation of international exchange of knowledge providing a forum to present and discuss all recent developments in the field of thermo-mechanical fatigue. The current special issue publishes eleven selected papers of the 3rd TMF-Workshop 2016. The papers were peer reviewed by a number of experts in the Thermo-Mechanical Fatigue sector. I hope you will enjoy reading papers of this special issue. T2 - 3rd International Workshop on Thermo-Mechanical Fatigue (TMF-Workshop 2016) CY - Berlin, Germany DA - 27.04.2016 KW - Fatigue damage KW - Thermo-mechanical fatigue KW - Fatigue life time KW - Life time prediction KW - TMF PY - 2017 DO - https://doi.org/10.1016/j.ijfatigue.2017.02.002 SN - 0142-1123 VL - 99 IS - 2 SP - 215 PB - Elsevier CY - Oxford AN - OPUS4-40895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kormunda, M. A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Sebik, M. A1 - Pavlik, J. A1 - Esser, N. T1 - Deposition and characterization of single magnetron deposited Fe:SnOx coatings N2 - Coatings deposited by magnetron co-sputtering from a single RF magnetron with a ceramic SnO2 target with iron inset in argon plasma were studied. The mass spectra of the process identified Sn+ and SnO+ species as the dominant species sputtered from the target, but no SnO2+ species were detected. The dominant positive ions in argon plasma are Ar+ species. The only detected negative ions were O-. Sputtered neutral tin related species were not detected. Iron related species were also not detected because their concentration is below the detection limit. The concentration of iron dopant in the tin oxide coatings was controlled by the RF bias applied on the substrate holder while the discharge pressure also has some influence. The iron concentration was in the range from 0.9 at.% up to 19 at.% increasing with the substrate bias while the sheet resistivity decreases. The stoichiometry ratio of O/(Sn + Fe) in the coatings increased from 1.7 up to 2 in dependence on the substrate bias from floating bias (- 5 V) up to - 120 V of RF self-bias, respectively. The tin in the coatings was mainly bonded in Sn4 + state and iron was mainly in Fe2 + state when other tin bonding states were detected only in a small amounts. Iron bonding states in contrary to elemental compositions of the coatings were not influenced by the RF bias applied on the substrate. The coatings showed high transparency in the visible spectral range. However, an increased metallic behavior could be detected by using a higher RF bias for the deposition. The X-ray diffraction patterns and electron microscopy pictures made on the coatings confirmed the presence of an amorphous phase. KW - Metal oxides KW - Transparent conductive oxides (TCO) KW - Magnetron KW - Optical properties KW - Ellipsometry KW - XPS characterzation PY - 2015 DO - https://doi.org/10.1016/j.tsf.2015.11.009 SN - 0040-6090 VL - 595 IS - Part A SP - 200 EP - 208 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Duwe, M. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. A1 - Bonse, Jörn T1 - Single Femtosecond Laser-Pulse-Induced Superficial Amorphization and Re-Crystallization of Silicon N2 - Superficial amorphization and re-crystallization of silicon in <111> and <100> orientation after irradiation by femtosecond laser pulses (790 nm, 30 fs) are studied using optical imaging and transmission electron microscopy. Spectroscopic imaging ellipsometry (SIE) allows fast data acquisition at multiple wavelengths and provides experimental data for calculating nanometric amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. For a radially Gaussian laser beam and at moderate peak fluences above the melting and below the ablation thresholds, laterally parabolic amorphous layer profiles with maximum thicknesses of several tens of nanometers were quantitatively attained. The accuracy of the calculations is verified experimentally by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). Along with topographic information obtained by atomic force microscopy (AFM), a comprehensive picture of the superficial re-solidification of silicon after local melting by femtosecond laser pulses is drawn. KW - Femtosecond laser KW - Silicon KW - Amorphization KW - Crystallization KW - Spectroscopic imaging ellipsometry PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523687 UR - https://www.mdpi.com/1996-1944/14/7/1651 DO - https://doi.org/10.3390/ma14071651 SN - 1996-1944 VL - 14 IS - 7 SP - 1651-1 EP - 1651-21 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-52368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kormunda, M. A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Sebik, M. A1 - Esser, N. T1 - Preparation of pulsed DC magnetron deposited Fe-doped SnO2 coatings N2 - Iron-doped SnO2 coatings were deposited in a 50 kHz DC-pulsed magnetron sputtering discharge. The pulses had a duration of 4 µs in selected gas mixtures from pure argon up to 60% of oxygen at a constant total pressure of 0.2 Pa. A single target of SnO2 with Fe inset was used. The mass spectrometry study detected the gas-related ions Ar+, O2+ and O+, where the last one becomes the dominant positive ion at higher oxygen contents. Atomic oxygen ions had a higher energy as it resulted from the collision-caused dissociation on the target surface. The tin-related species were detected as Sn+ and SnO+. SnO2+ species were not detected. The deposition rate decreased by using gas mixtures with oxygen as well as the corresponding amount of Sn-related species in the plasma. The increase of oxygen also increased significantly the sheet resistance of the films. The XPS study showed that the iron concentration decreased by using additional oxygen. But the O/Sn ratio in the coatings was constant, contrary to the increased FeO/Fe ratio in the films. An additional analysis of the coatings by spectroscopic ellipsometry has shown a dependence of the polarizability and the permittivity on the amount of oxygen used during the deposition. In contrast, the study has found no such dependence for the absorption of the layers. KW - Coatings KW - Magnetron sputtering KW - Optical properties KW - Sheet resistivity KW - SnO2 PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/pssa.201532882/full DO - https://doi.org/10.1002/pssa.201532882 SN - 0031-8965 SN - 1862-6300 VL - 213 IS - 9 SP - 2303 EP - 2309 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-38106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schott, M. A1 - Lorrmann, H. A1 - Szczerba, Wojciech A1 - Beck, M. A1 - Kurth, D.G. T1 - State-of-the-art electrochromic materials based on metallo-supramolecular polymers N2 - Metal ion induced self-assembly of iron(II)-acetate with the rigid ditopic ligand 1,4-bis(2,2':6',2''-terpyridin-4'-yl)benzene results in a metallo-supramolecular coordination polyelectrolyte (Fe-MEPE). Fe-MEPE shows a strong absorption band in the visible region around 590 nm, attributed to a metal-to-ligand-charge-transfer (MLCT) transition, which is responsible for the deep blue colour. Large area thin films of high optical quality can be readily fabricated by a dip coating process on transparent conducting electrodes. The Fe-MEPE films have a temperature stability up to 80 °C, measured by optical spectroscopy and XAFS (x-ray absorption fine structure). The cathodically coloured Fe-MEPE shows outstanding electrochromic properties and can be reversibly switched from Fe(II) (blue) to Fe(III) (colourless) by applying a potential of 4.1 V vs. Li/Li+. A very high optical contrast ΔT of 71% at a wavelength of 590 nm and a colouration efficiency of around 525 cm² C-1 can be realized. The devices show a long-term stability about 10,000 cycles. Thus, Fe-MEPE is a very promising electrochromic material for future applications of smart windows. KW - Metallo-supramolecular polyelectrolytes KW - Electrochromism KW - Dip coating KW - Cyclic voltammetry KW - Colouration efficiency PY - 2014 DO - https://doi.org/10.1016/j.solmat.2014.03.032 SN - 0927-0248 VL - 126 SP - 68 EP - 73 PB - NH, Elsevier CY - Amsterdam [u.a.] AN - OPUS4-30723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Bartusch, Jürgen A1 - Schadow, Florian A1 - Beck, Uwe A1 - Daschewski, M. A1 - Kreutzbruck, M. T1 - Airborne ultrasonic systems for one-sided inspection using thermoacoustic transmitters N2 - Airborne ultrasonic inspection is performed in through transmission, where the test piece (e.g. adhesive joint or polymer-based composite plate) is placed between the transmitter and the receiver. However, many structures with difficult shapes allow only one-sided inspection. The strong reflection of the signal from the surface overshadows the signals from the inside, so that broadband pulses are required. Thermoacoustic transmission, where the thermal energy of an electrically heated electrode is transformed into the acoustic energy of an ultrasonic wave, opens the possibility to excite broadband pulses and thus to inspect objects with one-sided access. We present various thermoacoustic transducers consisting of an electrically conductive film on a solid substrate. The first type of transducer is a transmitter with an indium-tin-oxide electrode on a glass substrate combined with a laser Doppler vibrometer as a receiver. The second type of transducer combines thermoacoustic transmission and piezoelectric reception, having a titanium electrode as a transmitter deposited onto charged cellular polypropylene serving as a piezoelectric receiver. Using a focusing thermoacoustic transmitter and a separate cellular polypropylene receiver, a through-transmission inspection of a 4 mm thick CFRP test piece with inserts as small as 1 mm was performed. The same emitter and a laser vibrometer as a receiver were used for a one-sided inspection of a Plexiglas block with a cross hole at 15 mm depth. A twin probe consisting of a thermoacoustic transmitter on a cellular polypropylene receiver was applied to a profile measurement on a step wedge with flat bottom holes. The smallest detected diameter of a flat bottom hole was 1 mm. Sound pressure level above 140dB was achieved with each of these transmitters. Thermoacoustic transmitters enable a step towards one-sided air-coupled ultrasonic inspection. T2 - IEEE International Ultrasonics Symposium CY - Tours, France DA - 18.09.2016 KW - Airborne KW - Air-coupled KW - Ultrasonic transducer KW - Thermoacoustic KW - Ferroelectret PY - 2016 SN - 978-1-4673-9897-8 SN - 1948-5719 SP - (online publication) 1 EP - 4 AN - OPUS4-37620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hähner, P. A1 - Rinaldi, C. A1 - Bicego, V. A1 - Affeldt, E. E. A1 - Brendel, T. A1 - Andersson, H. A1 - Beck, T. A1 - Klingelhöffer, Hellmuth A1 - Kühn, Hans-Joachim A1 - Köster, A. A1 - Loveday, M. A1 - Marchionni, M. A1 - Rae, C. T1 - Research and development into a European code-of-practice for strain-controlled thermo-mechanical fatigue testing N2 - Thermo-mechanical fatigue (TMF) testing plays an increasingly important role in the design, the reliability assessment and the lifecycle management of safety critical components used, for instance, for power generation, in the process industry and in aeronautical and automotive applications, with a view to increasing the fuel efficiency, safety and service intervals, while reducing production (and material) costs. In a European Commission funded research project (acronym: TMF-Standard) of the 5th Framework Programme, 20 European laboratories have undertaken a joint research effort to establish a validated code-of-practice (CoP) for strain-controlled TMF testing. Starting from a survey of the testing protocols and procedures previously used by the partners, a comprehensive pre-normative research activity into various issues has been completed, addressing the dynamic temperature control, the effects of deviations in nominal temperatures and phase angles, the influences of temperature gradients, as well as the practicalities of test interruption and restart procedures. Meaningful allowable tolerances for the various test parameters were identified and practical recommendations as to the test techniques were formulated. From this a preliminary CoP was compiled and used to guide an extensive round robin exercise among the project partners. From the statistical analysis of that exercise, a validated CoP was derived dealing with strain-controlled constant amplitude TMF of nominally homogeneous metallic materials subjected to spatially uniform temperature fields and uniaxial mechanical loading. It is intended to give advice and guidance on the appropriate test setup, testing procedures and the analysis of results, in particular for newcomers in the field of strain-controlled TMF. This paper highlights some of the results of the TMF-Standard project. Moreover, commonalities and differences of the present CoP with respect to the standard documents for strain-controlled TMF, which have been developed at ISO and ASTM levels, are presented in this paper. KW - Thermo-mechanical fatigue KW - Ni-base superalloy KW - Standardisation KW - Test methods PY - 2008 DO - https://doi.org/10.1016/j.ijfatigue.2007.01.052 SN - 0142-1123 VL - 30 IS - 2 SP - 372 EP - 381 PB - Elsevier CY - Oxford AN - OPUS4-17536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schott, M. A1 - Szczerba, Wojciech A1 - Posset, U. A1 - Vuk, A.S. A1 - Beck, M. A1 - Riesemeier, Heinrich A1 - Thünemann, Andreas A1 - Kurth, D. G. T1 - In operando XAFS experiments on flexible electrochromic devices based on Fe(II)-metallo-supramolecular polyelectrolytes and vanadium oxides N2 - Flexible electrochromic devices (ECDs) based on Fe(II)-metallo-supramolecular polyelectrolytes (Fe-MEPE) and vanadium oxide are studied in operando by means of x-ray absorption fine structure (XAFS) spectroscopy. The ECDs are blue-purple in the colored state at 0.0 V and become light yellow when a voltage of 1.6 V is applied. The XAFS studies at the K-edge of Fe(II) reveals that the absorption edge is shifted toward higher energies by 1.8 eV in the transparent state. Comparison of two different ECDs and different charge cycles demonstrates the reversibility and repeatability of the process. We attribute the shift to a charge transfer and a change of oxidation state of the ions from Fe2+ to Fe3+. The transition is not accompanied by a noticeable structural change of the octahedral coordination geometry as confirmed by analysis of the extended x-ray absorption fine structure (EXAFS) data. (C) 2015 Elsevier B.V. All rights reserved. KW - Metallo-supramolecular polyelectrolytes KW - Vanadium oxide KW - Electrochromism KW - Electrochromic device KW - Cyclic voltammetry KW - XAFS PY - 2016 DO - https://doi.org/10.1016/j.solmat.2015.10.015 SN - 0927-0248 VL - 147 SP - 61 EP - 67 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-35251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ganose, Alex M. A1 - Sahasrabuddhe, Hrushikesh A1 - Asta, Mark A1 - Beck, Kevin A1 - Biswas, Tathagata A1 - Bonkowski, Alexander A1 - Bustamante, Joana A1 - Chen, Xin A1 - Chiang, Yuan A1 - Chrzan, Daryl C. A1 - Clary, Jacob A1 - Cohen, Orion A. A1 - Ertural, Christina A1 - Gallant, Max C. A1 - George, Janine A1 - Gerits, Sophie A1 - Goodall, Rhys E. A. A1 - Guha, Rishabh D. A1 - Hautier, Geoffroy A1 - Horton, Matthew A1 - Inizan, T. J. A1 - Kaplan, Aaron D. A1 - Kingsbury, Ryan S. A1 - Kuner, Matthew C. A1 - Li, Bryant A1 - Linn, Xavier A1 - McDermott, Matthew J. A1 - Mohanakrishnan, Rohith Srinivaas A1 - Naik, Aakash A. A1 - Neaton, Jeffrey B. A1 - Parmar, Shehan M. A1 - Persson, Kristin A. A1 - Petretto, Guido A1 - Purcell, Thomas A. R. A1 - Ricci, Francesco A1 - Rich, Benjamin A1 - Riebesell, Janosh A1 - Rignanese, Gian-Marco A1 - Rosen, Andrew S. A1 - Scheffler, Matthias A1 - Schmidt, Jonathan A1 - Shen, Jimmy-Xuan A1 - Sobolev, Andrei A1 - Sundararaman, Ravishankar A1 - Tezak, Cooper A1 - Trinquet, Victor A1 - Varley, Joel B. A1 - Vigil-Fowler, Derek A1 - Wang, Duo A1 - Waroquiers, David A1 - Wen, Mingjian A1 - Yang, Han A1 - Zheng, Hui A1 - Zheng, Jiongzhi A1 - Zhu, Zhuoying A1 - Jain, Anubhav T1 - Atomate2: Modular workflows for materials science N2 - High-throughput density functional theory (DFT) calculations have become a vital element of computational materials science, enabling materials screening, property database generation, and training of “universal” machine learning models. While several software frameworks have emerged to support these computational efforts, new developments such as machine learned force fields have increased demands for more flexible and programmable workflow solutions. This manuscript introduces atomate2, a comprehensive evolution of our original atomate framework, designed to address existing limitations in computational materials research infrastructure. Key features include the support for multiple electronic structure packages and interoperability between them, along with generalizable workflows that can be written in an abstract form irrespective of the DFT package or machine learning force field used within them. Our hope is that atomate2's improved usability and extensibility can reduce technical barriers for high-throughput research workflows and facilitate the rapid adoption of emerging methods in computational material science. KW - Automation KW - Materials design KW - DFT workflows KW - Phonons KW - Thermal conductivity KW - Bonding analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-635759 DO - https://doi.org/10.1039/d5dd00019j SN - 2635-098X SP - 1 EP - 30 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-63575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ganose, Alex M. A1 - Sahasrabuddhe, Hrushikesh A1 - Asta, Mark A1 - Beck, Kevin A1 - Biswas, Tathagata A1 - Bonkowski, Alexander A1 - Bustamante, Joana A1 - Chen, Xin A1 - Chiang, Yuan A1 - Chrzan, Daryl C. A1 - Clary, Jacob A1 - Cohen, Orion A. A1 - Ertural, Christina A1 - Gallant, Max C. A1 - George, Janine A1 - Gerits, Sophie A1 - Goodall, Rhys E. A. A1 - Guha, Rishabh D. A1 - Hautier, Geoffroy A1 - Horton, Matthew A1 - Inizan, T. J. A1 - Kaplan, Aaron D. A1 - Kingsbury, Ryan S. A1 - Kuner, Matthew C. A1 - Li, Bryant A1 - Linn, Xavier A1 - McDermott, Matthew J. A1 - Mohanakrishnan, Rohith Srinivaas A1 - Naik, Aakash A. A1 - Neaton, Jeffrey B. A1 - Parmar, Shehan M. A1 - Persson, Kristin A. A1 - Petretto, Guido A1 - Purcell, Thomas A. R. A1 - Ricci, Francesco A1 - Rich, Benjamin A1 - Riebesell, Janosh A1 - Rignanese, Gian-Marco A1 - Rosen, Andrew S. A1 - Scheffler, Matthias A1 - Schmidt, Jonathan A1 - Shen, Jimmy-Xuan A1 - Sobolev, Andrei A1 - Sundararaman, Ravishankar A1 - Tezak, Cooper A1 - Trinquet, Victor A1 - Varley, Joel B. A1 - Vigil-Fowler, Derek A1 - Wang, Duo A1 - Waroquiers, David A1 - Wen, Mingjian A1 - Yang, Han A1 - Zheng, Hui A1 - Zheng, Jiongzhi A1 - Zhu, Zhuoying A1 - Jain, Anubhav T1 - Correction: Atomate2: Modular workflows for materials science N2 - Correction for “Atomate2: modular workflows for materials science” by Alex M. Ganose et al., Digital Discovery, 2025, 4, 1944–1973, https://doi.org/10.1039/D5DD00019J. PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-640297 DO - https://doi.org/10.1039/d5dd90036k SN - 2635-098X SP - 1 EP - 2 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-64029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Schwaar, Timm A1 - Springer, A. A1 - Grabarics, M. A1 - Riedel, Jens A1 - Beck, S. A1 - Pagel, K. A1 - Linscheid, M. W. T1 - Comparison of the fragmentation behavior of DNA and LNA single strands and duplexes N2 - DNA and locked nucleic acid (LNA) were characterized as single strands, as well as double stranded DNA-DNA duplexes and DNA-LNA hybrids using tandem mass spectrometry with collision-induced dissociation. Additionally, ion mobility spectrometry was carried out on selected species. Oligonucleotide duplexes of different sequences – bearing mismatch positions and abasic sites of complementary DNA 15-mers – were investigated to unravel general trends in their stability in the gas phase. Single stranded LNA oligonucleotides were also investigated with respect to their gas phase behavior and fragmentation upon collision-induced dissociation. In contrast to the collision-induced dissociation of DNA, almost no base loss was observed for LNAs. Here, backbone cleavages were the dominant dissociation pathways. This finding was further underlined by the need for higher activation energies. Base losses from the LNA strand were also absent in fragmentation experiments of the investigated DNA-LNA hybrid duplexes. While DNA-DNA duplexes dissociated easily into single stranded fragments, the high stability of DNA-LNA hybrids resulted in predominant fragmentation of the DNA part rather than the LNA, while base losses were only observed from the DNA single strand of the hybrid. KW - Oligonucleotide fragmentation KW - Locked nucleic acids KW - Collision induced dissociation (CID) KW - Double strands KW - Ion mobility spectrometry PY - 2019 DO - https://doi.org/10.1002/jms.4344 VL - 54 IS - 5 SP - 402 EP - 411 PB - Wiley AN - OPUS4-47485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trog, S. A1 - El-Khatib, Ahmed A1 - Beck, S. A1 - Makowski, M. A1 - Jakubowski, Norbert A1 - Linscheid, M. T1 - Complementarity of molecular and elemental mass spectrometric imaging of Gadovist™ in mouse tissues N2 - Drug biodistribution analyses can be considered a key issue in pharmaceutical discovery and development. Here, mass spectrometric imaging can be employed as a powerful tool to investigate distributions of drug compounds in biologically and medically relevant tissue sections. Both matrix-assisted laser desorption ionization–mass spectrometric imaging as molecular method and laser ablation inductively coupled plasma–mass spectrometric imaging as elemental detection method were applied to determine drug distributions in tissue thin sections. Several mouse organs including the heart, kidney, liver, and brain were analyzed with regard to distribution of Gadovist™, a gadolinium-based contrast agent already approved for clinical investigation. This work demonstrated the successful detection and localization of Gadovist™ in several organs. Furthermore, the results gave evidence that gadolinium-based contrast agents in general can be well analyzed by mass spectrometric imaging methods. In conclusion, the combined application of molecular and elemental mass spectrometry could complement each other and thus confirm analytical results or provide additional information. KW - Laser ablation inductively coupled plasma–mass spectrometry imaging (LA-ICP-MSI) KW - Gadolinium-based contrast agents (GBCAs) KW - Matrix-assisted laser desorption ionization–mass spectrometry imaging (MALDI-MSI) PY - 2019 DO - https://doi.org/10.1007/s00216-018-1477-9 SN - 1618-2642 SN - 1618-2650 VL - 411 IS - 3 SP - 629 EP - 637 PB - Springer AN - OPUS4-47371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jahnke, Annika A1 - Beck, Aaron J. A1 - Becker, Richard L. A1 - Bedulina, Daria A1 - Braun, Ulrike A1 - Gerdts, Gunnar A1 - Hildebrandt, Lars A1 - Joerss, Hanna A1 - Klein, Ole A1 - Korduan, Janine A1 - Laforsch, Christian A1 - Lannig, Gisela A1 - Leslie, Heather A. A1 - Lips, Stefan A1 - Menger, Frank A1 - Nabi, Deedar A1 - Oberbeckmann, Sonja A1 - Primpke, Sebastian A1 - Pröfrock, Daniel A1 - Ramsperger, Anja F.R.M. A1 - Römerscheid, Mara A1 - Schmitt-Jansen, Mechthild A1 - Scholz-Böttcher, Barbara M. A1 - Tröppner, Oliver A1 - Wendt-Potthoff, Katrin A1 - Kühnel, Dana T1 - Perspective article: Multisectoral considerations to enable a circular economy for plastics N2 - Plastics are widely used but improper disposal and release lead to increasing global pollution, threatening environmental and human health. To address this issue, we suggest intersectoral collaboration to achieve zero plastic pollution. The outcomes of the project P-LEACH demonstrated the enormous complexity and range of potential toxic effects of plastic-associated chemicals and micro-/nanoplastics released into water from UV-weathered plastics. We initiated an intersectoral dialogue amongst scientists, manufacturers, regulators and representatives of civil society about how to alleviate the negative impacts of plastic pollution. Circular economy offers a framework for selecting non-toxic chemicals, extending product (re)use, and waste reduction, which act to alleviate pollution when applied to plastics. We suggest three measures to advance a circular economy of plastics: 1.) Increase simplicity of chemicals in virgin plastics combined with transparent information on the contents; 2.) Consider recyclability already in plastic material and product design; 3.) Foster communication through intersectoral dialogue. Major cornerstones are the provision of standardized, easy-to-use tools to characterize plastics and plastic leachates chemically and (eco)toxicologically, the enhancement of citizen awareness enabling them to make informed choices, the creation of economic incentives for manufacturers, and sector-specific regulations to provide products that safeguard environmental and human health. KW - Plastics KW - Circular economy KW - Cross-sectoral dialogue KW - Recyclability KW - Plastic-associated chemicals PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638280 DO - https://doi.org/10.1016/j.jhazmat.2025.139326 SN - 0304-3894 VL - 496 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-63828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruhe, L. A1 - Ickert, Stefanie A1 - Hochkirch, U. A1 - Hofmann, J. A1 - Beck, S. A1 - Thomale, J. A1 - Linscheid, M. W. T1 - Comprehensive molecular characterization of a cisplatin-specific monoclonal antibody N2 - Despite their immense and rapidly increasing importance as analytical tools or therapeutic drugs, the detailed structural features of particular monoclonal antibodies are widely unknown. Here, an antibody already in use for diagnostic purposes and for molecular dosimetry studies in cancer therapy with very high affinity and specificity for cisplatin-induced DNA modifications was studied extensively. The molecular structure and modifications as well as the antigen specificity were investigated mainly by mass spectrometry. Using nano electrospray ionization mass spectrometry, it was possible to characterize the antibody in its native state. Tandem-MS experiments not only revealed specific fragments but also gave information on the molecular structure. The detailed primary structure was further elucidated by proteolytic treatment with a selection of enzymes and high resolution tandem-MS. The data were validated by comparison with known antibody sequences. Then, the complex glycan structures bound to the antibody were characterized in all detail. The Fc-bound oligosaccharides were released enzymatically and studied by matrix-assisted laser desorption/ionization mass spectrometry. Overall 16 different major glycan structures were identified. The binding specificity of the antibody was investigated by applying synthetic single and double stranded DNA oligomers harboring distinct Pt adducts. The antibody− antigen complexes were analyzed by mass spectrometry under native conditions. The stability of the complex with double stranded DNA was also investigated. KW - Antibody KW - Native MS KW - Cisplatin KW - PTM PY - 2017 DO - https://doi.org/10.1021/acs.molpharmaceut.7b00575 SN - 1543-8384 SN - 1543-8392 VL - 14 IS - 12 SP - 4454 EP - 4461 AN - OPUS4-43997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruhe, L. A1 - Ickert, Stefanie A1 - Beck, S. A1 - Linscheid, M. W. T1 - A new strategy for metal labeling of glycan structures in antibodies N2 - Quantitative analysis of complex proteins is a challenging task in modern bioanalytical chemistry. Commonly available isotope labels are still suffering from limitations and drawbacks, whereas new metal labels open numerous possibilities in mass spectrometric analyses. In this work, we have developed a newmetal labeling strategy to tag glycan structures of proteins, more particularly antibodies. The oligosaccharide glycans were selectively trimmed to the last N-acetylglucosamine to which an artificial azide containing galactose residue was bound. This azide can be used for subsequent cycloaddition of an alkyne. Therefore, we developed a lanthanide-containing macrocyclic reagent to selectively connect to this azido galactose. In summary, the glycan structures of an antibody can be labeled with a metal functionality using this approach. Furthermore, the functionality of the antibodies can be fully maintained by labeling the Fc glycans instead of using labeling reagents that target amino or thiol groups. This approach enables the possibility of using elemental, besides molecular mass spectrometry, for quantitative analyses or imaging experiments of antibodies in complex biological samples. KW - Antibody KW - Metal labeling KW - Glycans KW - DOTA KW - Lanthanide PY - 2018 DO - https://doi.org/10.1007/s00216-017-0683-1 SN - 1618-2650 SN - 1618-2642 VL - 410 IS - 1 SP - 21 EP - 25 PB - Springer AN - OPUS4-44000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stockmann, Jörg M. A1 - Hertwig, Andreas A1 - Beck, Uwe T1 - Visualization of low-contrast surface modifications: Thin films, printed pattern, laser-induced changes, imperfections, impurities, and degradation N2 - Visualization of surface modifications may be very challenging for coating/substrate systems of either almost identical optical constants, e.g. transparent films on substrates of the same material, or minor film thickness, substance quantity and affected area, e.g. ultra-thin or island films. Methods for visualization are optical microscopy (OM), imaging ellipsometry (IE), and referenced spectroscopic ellipsometry (RSE). Imaging ellipsometry operates at oblique incidence near Brewster angle of the bare, clean or unmodified substrate. In this configuration, reflected intensities are rather weak. However, the contrast to add-on and sub-off features may be superior. Referenced spectroscopic ellipsometry operates in a two-sample configuration but with much higher intensities. In many cases, both ellipsometric techniques reveal and visualize thin films, printed-pattern, laser-induced changes, and impurities better than optical microscopy. In particular for stratified homogeneous modifications, ellipsometric techniques give access to modelling and hence thickness determination. Modifications under investigation are polymer foil residue on silicon, laser-induced changes of ta-C:H coatings on 100Cr6 steel, imperfections of ta-C:H on thermal silicon oxide, degradation of glass, thin film tin oxide pattern on silicon, printed and dried pattern of liquids such as deionized water, cleaning agents, and dissolved silicone. © 2016 Elsevier B.V. All rights reserved. T2 - International Conference on Spectroscopic Ellipsometry (ICSE-7) CY - Berlin, Germany DA - 06.06.2016 KW - Optical microscopy (OM) KW - Imaging ellipsometry (IE) KW - Referenced spectroscopic ellipsometry (RSE) KW - Thin films KW - Impurities KW - Degradation PY - 2016 DO - https://doi.org/10.1016/j.apsusc.2016.10.145 SN - 0196-4332 VL - 2017 IS - 421 SP - 807 EP - 812 PB - Elsevier B.V. AN - OPUS4-42136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Hofmann, J. A1 - Riedel, Jens A1 - Beck, S. A1 - Pagel, K. A1 - Linscheid, M. W. T1 - Charge-induced geometrical reorganization of DNA oligonucleotides studied by tandem mass spectrometry and ion mobility N2 - Mass spectrometry is applied as a tool for the elucidation of molecular structures. This premises that gas-phase structures reflect the original geometry of the analytes, while it requires a thorough understanding and investigation of the forces controlling and affecting the gas-phase structures. However, only little is known about conformational changes of oligonucleotides in the gas phase. In this study, a series of multiply charged DNA oligonucleotides (n¼15–40) has been subjected to a comprehensive tandem mass spectrometric study to unravel transitions between different ionic gas-phase structures. The nucleobase sequence and the chain length were varied to gain insights into their influence on the geometrical oligonucleotide organization. Altogether, 23 oligonucleotides were analyzed using collision-induced fragmentation. All sequences showed comparable correlation regarding the characteristic collision energy. This value that is also a measure for stability, strongly correlates with the net charge density of the precursor ions. With decreasing charge of the oligonucleotides, an increase in the fragmentation energy was observed. At a distinct charge density, a deviation from linearity was observed for all studied species, indicating a structural reorganization. To corroborate the proposed geometrical change, collisional cross-sections of the oligonucleotides at different charge states were determined using ion mobility-mass spectrometry. The results clearly indicate that an increase in charge density and thus Coulomb repulsion results in the transition from a folded, compact form to elongated structures of the precursor ions. Our data show this structural transition to depend mainly on the charge density, whereas sequence and size do not have an influence. KW - Ion mobility KW - Collision-induced dissociation KW - Mass spectrometry KW - Oligonucleotide KW - Fragmentation KW - Tandem-MS PY - 2018 DO - https://doi.org/10.1177/1469066717746896 SN - 1469-0667 SN - 1751-6838 VL - 24 IS - 2 SP - 225 EP - 230 PB - Sage AN - OPUS4-44429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Riedel, Jens A1 - Beck, S. A1 - Linscheid, M. W. T1 - Negative nucleotide ions as sensitive probes for energy specificity in collision‐induced fragmentation in mass spectrometry N2 - Rationale: The most commonly used fragmentation methods in tandem mass spectrometry (MS/MS) are collision‐induced dissociation (CID) and higher energy collisional dissociation (HCD). While in CID the preselected ions in the trap are resonantly (and m/z exclusively) excited, in HCD the entire m/z range experiences the dissociative acceleration. The different excitation is reflected in different fragment distributions. Methods: As a test‐bed for particularly pronounced fragmentation specificity, here MS/MS experiments on several 4‐mer oligonucleotides were conducted employing both collision methods and the results were thoroughly compared. Oligonucleotides are shown to be sensitive probes to subtle changes, especially in the negative ion mode. A detailed analysis of these differences reveals insight into the dissociation mechanics. Results: Thedifferencesarerepresentedinheat‐maps,whichallowforadirectvisualinspection oflargeamountsofdata.Inthesefalsecolourrepresentationsthe,sometimessubtle,changesinthe individual dissociation product distributions become distinct. Another advantage of these graphic plots can be found in the formation of systematic patterns. These patterns reflect trends in dissociation specificity which allow for the formulation of general rules in fragmentation behavior. Conclusions: Instruments equipped with two different excitation schemes for MS/MS are today widely available. Nonetheless, direct comparisons between the individual results are scarcely made. Such comparative studies bear a powerful analytical potential to elucidate fragmentation reaction mechanism. KW - DNA KW - Tandem MS KW - HCD KW - CID PY - 2018 DO - https://doi.org/10.1002/rcm.8062 SN - 0951-4198 SN - 1097-0231 VL - 32 IS - 7 SP - 597 EP - 603 PB - Wiley & Sons, Ltd. AN - OPUS4-44430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Negendank, Detlef A1 - Lohse, Volkmar A1 - Kormunda, M. A1 - Esser, N. T1 - Dependence of the optical constants and the performance in the SPREE gas measurement on the thickness of doped tin oxide over coatings N2 - In this study, thickness related changes of the optical properties of doped tin oxide were studied. Two different sets of samples were prepared. The first set was doped with iron or nickel on silicon substrate with thicknesses of 29–56 nm, the second was iron doped on gold/glass substrate with 1.6–6.3 nm. The optical constants were determined by using spectral ellipsometry (SE) followed by modelling of the dielectric function with an oscillator model using Gaussian peaks. The analysis of the optical constants shows a dependence of the refraction and the absorption on the thickness of the doped tin oxide coating. In addition to the tin oxide absorption in the UV, one additional absorption peak was found in the near-IR/red which is related to plasmonic effects due to the doping. This peak shifts from the near-IR to the red part of the visible spectrum and becomes stronger by reducing the thickness, probably due to the formation of metal nanoparticles in this layer. These results were found for two different sets of samples by using the same optical model. Afterwards the second sample set was tested in the Surface Plasmon Resonance Enhanced Ellipsometric (SPREE) gas measurement with CO gas. It was found that the thickness has significant influence on the sensitivity and thus the adsorption of the CO gas. By increasing the thickness from 1.6 nm to 5.1 nm, the sensing ability is enhanced due to a higher coverage of the surface with the over coating. This is explained by the high affinity of CO molecules to the incorporated Fe-nanoparticles in the tin oxide coating. By increasing the thickness further to 6.3 nm, the sensing ability drops because the layer disturbs the SPR sensing effect too much. T2 - 7th International Conference on Spectroscopic Ellipsometry (ICSE-7) DA - 06.06.2016 KW - Surface plasmon resonance KW - Spectroscopic ellipsometry KW - Doped tin oxide KW - Gas sensing KW - Plasmonic absorption PY - 2017 DO - https://doi.org/10.1016/j.apsusc.2016.11.188 SN - 0169-4332 VL - 421, Teil B SP - 480 EP - 486 PB - Elsevier B.V. AN - OPUS4-42692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosu, Dana Maria A1 - Petrik, P. A1 - Rattmann, G. A1 - Schellenberger, M. A1 - Beck, Uwe A1 - Hertwig, Andreas T1 - Optical characterization of patterned thin films N2 - The present study investigates the use of imaging and mapping ellipsometry to determine the properties of non-ideal and patterned thin film samples. Samples which are candidates for future references and standards were prepared for this purpose. The samples investigated were lithographically patterned SiO2 and photoresist layers. The thickness and the optical constants of the two materials were determined using spectroscopic ellipsometry in the visible spectral range. On a larger lateral scale of several mm lateral resolution, the homogeneity was investigated using a goniospectral rotating compensator ellipsometer. A nulling imaging ellipsometer was used to determine the properties of the sample on a smaller scale of 25–150 µm. KW - Spectroscopic imaging and mapping ellipsometry KW - Inhomogeneous and patterned thin films KW - SiO2 KW - Photoresist KW - Ellipsometrie KW - Patterned films PY - 2014 DO - https://doi.org/10.1016/j.tsf.2013.11.052 SN - 0040-6090 VL - 571 IS - 3 SP - 601 EP - 604 PB - Elsevier CY - Amsterdam AN - OPUS4-32695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -