TY - JOUR A1 - Bartoschewitz, R. A1 - Appel, P. A1 - Barrat, J.-A. A1 - Bischoff, A. A1 - Caffee, M.W. A1 - Franchi, I.A. A1 - Gabelica, Z. A1 - Greenwood, R.C. A1 - Harir, M. A1 - Harries, D. A1 - Hochleitner, R. A1 - Hopp, J. A1 - Laubenstein, M. A1 - Mader, B. A1 - Marques, R. A1 - Morlok, A. A1 - Nolze, Gert A1 - Prudêncio, M.I. A1 - Rochette, P. A1 - Ruf, A. A1 - Schmitt-Kopplin, P. A1 - Seemann, E. A1 - Szurgot, M. A1 - Tagle, R. A1 - Wach, R.A. A1 - Welten, K. C. A1 - Weyrauch, M. A1 - Wimmer, K. T1 - The Braunschweig meteorite − a recent L6 chondrite fall in Germany JF - Chemie der Erde N2 - On April 23rd 2013 at 2:07 a.m., a 1.3 kg meteorite fell in the Braunschweig suburb Melverode (52° 13′ 32.19″ N. 10° 31′ 11.60″ E). Its estimated velocity was 250 km/h and it formed an impact pit in the concrete fall site with a diameter of 7 cm and a depth of 3 cm. Radial dust striae are present around the impact pit. As a result of the impact, the meteorite disintegrated into several hundred fragments with masses up to 214 g. The meteorite is a typical L6 chondrite, moderately shocked (S4) – but with a remarkably high porosity (up to 20 vol%). The meteorite was ejected from its parent body as an object with a radius of about 10–15 cm (15–50 kg). The U,Th-He gas retention age of ∼550 Ma overlaps with the main impact event on the L-chondrite parent body ∼470 Ma ago that is recorded by many shocked L chondrites. The preferred cosmic-ray exposure age derived from production of radionuclides and noble gas isotopes is (6.0 ± 1.3) Ma. KW - Braunschweig meteorite KW - L chondrite KW - Fall reconstruction KW - Petrology and mineralogy KW - Organic matter KW - IR spectroscopy KW - Bulk chemistry KW - Radionuclides KW - Noble gas isotopes KW - Specific heat PY - 2016 DO - https://doi.org/10.1016/j.chemer.2016.10.004 SN - 0009-2819 SN - 1611-5864 VL - 77 IS - 1 SP - 207 EP - 224 AN - OPUS4-42018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Böhning, Martin A1 - Zamponi, M. A1 - Frick, B. A1 - Appel, M. A1 - Günther, G. A1 - Russina, M. A1 - Alentiev, D. A1 - Bermeshev, M. A1 - Zorn, R. T1 - Microscopic dynamics of highly permeable super glassy polynorbornenes revealed by quasielastic neutron scattering JF - Journal of Membrane Science N2 - The molecular dynamics of addition-type poly(tricyclononenes) with Si-substituted bulky side groups has been investigated by a combination of neutron time-of-flight and neutron backscattering spectroscopy methods on a time scale from 0.1 ps to ca. 3 ns. The investigated poly(tricyclononenes) PTCNSi1 and PTCNSi2g both bear a high microporosity which makes them promising candidates for active separation layers for gas separation membranes. At least for larger gas molecules it is assumed that the pathways for diffusion require an enlargement of pre-existing micropores in terms of an activated zone. A low temperature relaxation process was found for both polymers by the performed neutron scattering experiments. This process was assigned to the methyl group rotation. It was analysed in terms of a jump diffusion in a three-fold potential. The analysis of the dependence of the elastic incoherent structure factor on the scattering vector yields the number of methyl groups which might be immobilized. For PTCNSi1 (3 methyl groups in the monomeric unit) it was found that all methyl groups take part in the methyl group rotation whereas for PTCNSi2g (6 methyl groups in monomeric unit) a considerable number of methyl groups are blocked in their rotation. This immobilization of methyl groups is due to the sterically demanding arrangement of the methyl groups in PTCNSi2g. This conclusion is further supported by the result that the activation energy for the methyl group rotation is three times higher for PTCNSi2g than that of PTCNSi1. KW - Highly permeably polynorbornenes KW - Polymers of intrinsic microporosity KW - Gas separation membranes KW - Quasielastic neutron scattering PY - 2021 DO - https://doi.org/10.1016/j.memsci.2021.119972 SN - 0376-7388 VL - 642 PB - Elesevier B.V. AN - OPUS4-53508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anzt, H. A1 - Bach, F. A1 - Druskat, S. A1 - Löffler, F. A1 - Loewe, A. A1 - Renard, B. Y. A1 - Seemann, G. A1 - Struck, A. A1 - Achhammer, E. A1 - Aggarwal, P. A1 - Appel, F. A1 - Bader, M. A1 - Brusch, L. A1 - Busse, C. A1 - Chourdakis, G. A1 - Dabrowski, P. W. A1 - Ebert, P. A1 - Flemisch, B. A1 - Friedl, S. A1 - Fritzsch, B. A1 - Funk, M. D. A1 - Gast, V. A1 - Goth, F. A1 - Grad, J. A1 - Hegewald, J. A1 - Hermann, S. A1 - Hohmann, F. A1 - Janosch, S. A1 - Kutra, D. A1 - Linxweiler, J. A1 - Muth, Thilo A1 - Peters-Kottig, W. A1 - Rack, F. A1 - Raters, F. H. C. A1 - Rave, S. A1 - Reina, G. A1 - Reißig, M. A1 - Ropinski, T. A1 - Schaarschmidt, J. A1 - Seibold, H. A1 - Thiele, J. P. A1 - Uekermann, B. A1 - Unger, S. A1 - Weeber, R. T1 - An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action JF - F1000 Research N2 - Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin. KW - Research Software KW - Sustainable Software Development KW - Academic Software KW - Software Infrastructure KW - Software Training KW - Software Licensing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522029 DO - https://doi.org/10.12688/f1000research.23224.2 VL - 9 SP - 1 EP - 35 AN - OPUS4-52202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schoonjans, Tom A1 - Vincze, L. A1 - Solé, V. A. A1 - Sanchez del Rio, M. A1 - Brondeel, P. A1 - Silversmit, G. A1 - Appel, K. A1 - Ferrero, C. T1 - XMI-MSIM 5.0 N2 - XMI-MSIM is an open source tool designed for predicting the spectral response of energy-dispersive X-ray fluorescence spectrometers using Monte-Carlo simulations. It comes with a fully functional graphical user interface in order to make it as user friendly as possible. Considerable effort has been taken to ensure easy installation on all major platforms. Development of this package was part of my PhD thesis. The algorithms were inspired by the work of my promotor Prof. Laszlo Vincze of Ghent University. Links to his and my own publications can be found in our manual. A manuscript has been published in Spectrochimica Acta Part B that covers the algorithms that power XMI-MSIM. Please include a reference to this publication in your own work if you decide to use XMI-MSIM for academic purposes. A second manuscript was published that covers our XMI-MSIM based quantification plug-in for PyMca. Soon information on using this plug-in will be added to the manual. XMI-MSIM is released under the terms of the GPLv3. Development occurs at Github: http://github.com/tschoonj/xmimsim Downloads are hosted by the X-ray Micro-spectroscopy and Imaging research group of Ghent University: http://lvserver.ugent.be/xmi-msim Version 5.0 release notes: Changes: 1. Custom detector response function: build a own plug-in containing your own detector response function and load it at run-time to override the builtin routines. Instructions can be found in the manual. 2. Escape peak improvements: new algorithm is used to calculate the escape peak ratios based on a combined brute-force and variance-reduction approach. Ensures high accuracy even at high incoming photon energies and thin detector crystals. Downside: it's slower… 3. Removed maximum convolution energy option. Was a bit confusing anyway. 4. Number of channels: moved from simulation controls into input-file 5. Radionuclide support added: Now you can select one or more commonly used radionuclide sources from the X-ray sources widget. 6. Advanced Compton scattering simulation: a new alternative implementation of the Compton scattering has been implemented based on the work of Fernandez and Scot (http://dx.doi.org/10.1016/j.nimb.2007.04.203), which takes into account unpopulated atomic orbitals. Provides an improved simulation of the Compton profile, as well as fluorescence contributions due to Compton effect (extremely low!), but slows the code down considerably. Advanced users only. Default: OFF 7. Plot spectra before convolution in results 8. Windows: new Inno Setup installers. Contains the headers and import libraries 9. Windows: compilers changed to GCC 4.8.1 (TDM-GCC) 10. Windows: rand_s used to generate seeds on 64-bit version (requires Vista or later) 11. Windows: new gtk runtime for the 64-bit version (see also https://github.com/tschoonj/GTK-for-Windows-Runtime-Environment-Installer) 12. Mac OS X: compilers changed to clang 5.1 (Xcode) and gfortran 4.9.1 (MacPorts) 13. Original input-files from our 2012 publication (http://dx.doi.org/10.1016/j.sab.2012.03.011) added to examples 14. Updater performs checksum verification after download 15. X-ray sources last used values stored in preferences.ini 16. xmimsimdata.h5 modified: even bigger now... Bugfixes: 1. Windows: support for usernames with unicode characters. Fixed using customized builds of HDF5. Thanks to Takashi Omori of Techno-X for the report! 2. Spectrum import from file fixes. Was never properly tested apparently Note: For those that compiled XMI-MSIM from source: you will need to regenerate the xmimsimdata.h5 file with xmimsim-db. Old versions of this file will not work with XMI-MSIM 5.0. KW - Spectral response KW - Energy-dispersive X-ray fluorescence spectrometers KW - Monte-Carlo simulations PY - 2014 DO - https://doi.org/10.5281/zenodo.12381 PB - Zenodo CY - Geneva AN - OPUS4-51925 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aliyah, K. A1 - Prehal, C. A1 - Diercks, J. S. A1 - Diklić, N. A1 - Xu, L. A1 - Ünsal, S. A1 - Appel, C. A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Guizar-Sicairos, M. A1 - Herranz, J. A1 - Gubler, L. A1 - Büchi, F. N. A1 - Eller, J. T1 - Quantification of PEFC Catalyst Layer Saturation via In Silico, Ex Situ, and In Situ Small-Angle X-ray Scattering JF - ACS Applied Materials & Interfaces N2 - The complex nature of liquid water saturation of polymer electrolyte fuel cell (PEFC) catalyst layers (CLs) greatly affects the device performance. To investigate this problem, we present a method to quantify the presence of liquid water in a PEFC CL using small-angle X-ray scattering (SAXS). This method leverages the differences in electron densities between the solid catalyst matrix and the liquid water filled pores of the CL under both dry and wet conditions. This approach is validated using ex situ wetting experiments, which aid the study of the transient saturation of a CL in a flow cell configuration in situ. The azimuthally integrated scattering data are fitted using 3D morphology models of the CL under dry conditions. Different wetting scenarios are realized in silico, and the corresponding SAXS data are numerically simulated by a direct 3D Fourier transformation. The simulated SAXS profiles of the different wetting scenarios are used to interpret the measured SAXS data which allows the derivation of the most probable wetting mechanism within a flow cell electrode. KW - Polymer electrolyte fuel cell KW - Water management KW - Catalyst layer KW - Representative morphology modeling KW - Small-angle X-ray scattering KW - MOUSE KW - SAXS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575973 DO - https://doi.org/10.1021/acsami.3c00420 SN - 1944-8244 VL - 15 IS - 22 SP - 26538 EP - 26553 PB - ACS Publications AN - OPUS4-57597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -