TY - JOUR A1 - Ramos, I. I. A1 - Carl, Peter A1 - Schneider, Rudolf A1 - Segundo, M. A. T1 - Automated lab-on-valve sequential injection ELISA for determination of carbamazepine JF - Analytica Chimica Acta N2 - The development of an automated miniaturized analytical system that allows for the rapid monitoring of carbamazepine (CBZ) levels in serum and wastewater is proposed. Molecular recognition of CBZ was achieved through its selective interaction with microbeads carrying anti-CBZ antibodies. The proposed method combines the advantages of the micro-bead injection spectroscopy and of the flow-based platform lab-on-valve for implementation of automatic immunosorbent renewal, rendering a new recognition surface for each sample. The sequential (or simultaneous) perfusion of CBZ and the horseradish peroxidase-labelled CBZ through the microbeads is followed by real-time on-column Monitoring of substrate (3,30,5,50-tetramethylbenzidine) oxidation by colorimetry. The evaluation of the initial oxidation rate and also the absorbance value at a fixed time point provided a linear response versus the logarithm of the CBZ concentration. Under the selected assay conditions, a single analysis was completed after only 11 min, with a quantification range between 1.0 and 50 µg L⁻¹. Detection of CBZ levels in undiluted wastewater samples was feasible after a simple filtration step while good recoveries were attained for spiked certified human serum, analyzed without sample clean-up. KW - Automation KW - Bead injection spectroscopy KW - Human serum KW - Microparticles KW - Therapeutic Drug Monitoring KW - Wastewater PY - 2019 DO - https://doi.org/10.1016/j.aca.2019.05.017 SN - 0003-2670 VL - 1076 SP - 91 EP - 99 PB - Elsevier CY - Amsterdam AN - OPUS4-48317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gregório, Bruno J.R. A1 - Ramos, Inês I. A1 - Marques, Sara S. A1 - Barreiros, Luísa A1 - Magalhães, Luís M. A1 - Schneider, Rudolf A1 - Segundo, Marcela A. T1 - Microcarrier-based fluorescent yeast estrogen screen assay for fast determination of endocrine disrupting compounds JF - Talanta N2 - The presence of endocrine-disrupting compounds (EDCs) in water poses a significant threat to human and animal health, as recognized by regulatory agencies throughout the world. The Yeast Estrogen Screen (YES) assay is an excellent method to evaluate the presence of these compounds in water due to its simplicity and capacity to assess the bioaccessible forms/fractions of these compounds. In the presence of a compound with estrogenic activity, Saccharomyces cerevisiae cells, containing a lacZ reporter gene encoding the enzyme β-galactosidase, are induced, the enzyme is synthesised, and released to the extracellular medium. In this work, a YES-based approach encompassing the use of a lacZ reporter gene modified strain of S. cerevisiae, microcarriers as solid support, and a fluorescent substrate, fluorescein di-β-D-galactopyranoside, is proposed, allowing for the assessment of EDCs’ presence after only 2 h of incubation. The proposed method provided an EC50 of 0.17 ± 0.03 nM and an LLOQ of 0.03 nM, expressed as 17β-estradiol. The assessment of different EDCs provided EC50 values between 0.16 and 1.2 × 103 nM. After application to wastewaters, similar results were obtained for EDCs screening, much faster, compared to the conventional 45 h spectrophotometric procedure using a commercial kit, showing potential for onsite high-throughput screening of environmental contamination. KW - Biosensoren KW - YES assay KW - Endokrine Disruptoren PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602315 DO - https://doi.org/10.1016/j.talanta.2024.125665 VL - 271 SP - 1 EP - 7 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-60231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -