TY - JOUR A1 - Abou-Ras, D. A1 - Caballero, R. A1 - Fischer, C.-H. A1 - Kaufmann, C.A. A1 - Lauermann, I. A1 - Mainz, R. A1 - Mönig, H. A1 - Schöpke, A. A1 - Stephan, C. A1 - Streeck, C. A1 - Schorr, S. A1 - Eicke, A. A1 - Döbeli, M. A1 - Gade, B. A1 - Hinrichs, J. A1 - Nunney, T. A1 - Dijkstra, H. A1 - Hoffmann, V. A1 - Klemm, D. A1 - Efimova, V. A1 - Bergmaier, A. A1 - Dollinger, G. A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Rockett, A.A. A1 - Perez-Rodriguez, A. A1 - Alvarez-Garcia, J. A1 - Izquierdo-Roca, V. A1 - Schmid, T. A1 - Choi, P.-P. A1 - Müller, M. A1 - Bertram, F. A1 - Christen, J. A1 - Khatri, H. A1 - Collins, R.W. A1 - Marsillac, S. A1 - Kötschau, I. T1 - Comprehensive comparison of various techniques for the analysis of elemental distributions in thin films N2 - The present work shows results on elemental distribution analyses in Cu(In,Ga)Se2 thin films for solar cells performed by use of wavelength-dispersive and energy-dispersive X-ray spectrometry (EDX) in a scanning electron microscope, EDX in a transmission electron microscope, X-ray photoelectron, angle-dependent soft X-ray emission, secondary ion-mass (SIMS), time-of-flight SIMS, sputtered neutral mass, glow-discharge optical emission and glow-discharge mass, Auger electron, and Rutherford backscattering spectrometry, by use of scanning Auger electron microscopy, Raman depth profiling, and Raman mapping, as well as by use of elastic recoil detection analysis, grazing-incidence X-ray and electron backscatter diffraction, and grazing-incidence X-ray fluorescence analysis. The Cu(In,Ga)Se2 thin films used for the present comparison were produced during the same identical deposition run and exhibit thicknesses of about 2 µm. The analysis techniques were compared with respect to their spatial and depth resolutions, measuring speeds, availabilities, and detection limits. KW - Elemental distributions KW - Comparison KW - Depth profiling KW - Chemical mapping KW - Thin films KW - Solar cells KW - Chalcopyrite-type KW - Cu(In,Ga)Se2 PY - 2011 DO - https://doi.org/10.1017/S1431927611000523 SN - 1431-9276 SN - 1435-8115 VL - 17 IS - 5 SP - 728 EP - 751 PB - Cambridge University Press CY - New York, NY AN - OPUS4-24506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, A. M. A1 - von der Au, Marcus A1 - Regnery, J. A1 - Schmid, M. A1 - Meermann, Björn A1 - Reifferscheid, G. A1 - Ternes, T. A1 - Buchinger, S. T1 - Does galvanic cathodic protection by aluminum anodes impact marine organisms? N2 - Background: Cathodic protection by sacrifcial anodes composed of aluminum-zinc-indium alloys is often applied to protect ofshore support structures of wind turbines from corrosion. Given the considerable growth of renewable energies and thus ofshore wind farms in Germany over the last decade, increasing levels of aluminum, Indium and zinc are released to the marine environment. Although these metals are ecotoxicologically well-studied, data regarding their impact on marine organisms, especially sediment-dwelling species, as well as possible ecotoxicological efects of galvanic anodes are scarce. To investigate possible ecotoxicological efects to the marine environment, the diatom Phaedactylum tricornutum, the bacterium Aliivibrio fscheri and the amphipod Corophium volutator were exposed to dissolved galvanic anodes and solutions of aluminum and zinc, respectively, in standardized laboratory tests using natural seawater. In addition to acute toxicological efects, the uptake of these elements by C. volutator was investigated. Results: The investigated anode material caused no acute toxicity to the tested bacteria and only weak but signifcant efects on algal growth. In case of the amphipods, the single elements Al and Zn showed signifcant efects only at the highest tested concentrations. Moreover, an accumulation of Al and In was observed in the crustacea species. Conclusions: Overall, the fndings of this study indicated no direct environmental impact on the tested marine organisms by the use of galvanic anodes for cathodic protection. However, the accumulation of metals in, e.g., crustaceans might enhance their trophic transfer within the marine food web. KW - Galvanic anodes KW - Metal toxicity KW - Metal uptake KW - Corophium volutator KW - Seawater PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520769 DO - https://doi.org/10.1186/s12302-020-00441-3 VL - 32 IS - 1 SP - Article number 157 AN - OPUS4-52076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reuter, T. A1 - Borges de Oliveira, F. A1 - Abt, Ch. A1 - Ballach, F. A1 - Bartscher, M. A1 - Bellon, Carsten A1 - Dennerlein, F. A1 - Fuchs, P. A1 - Günnewig, O. A1 - Hausotte, T. A1 - Hess, J. A1 - Kasperl, S. A1 - Maass, N. A1 - Kimmig, W. A1 - Schielein, R. A1 - von Schmid, M. A1 - Suppes, A. A1 - Wagner, G. A1 - Watzl, Ch. A1 - Wohlgemuth, F. T1 - Introduction to “Realistic Simulation of real CT systems with a basic-qualified Simulation Software - CTSimU2“ N2 - The lack of traceability to meter of X-ray Computed Tomography (CT) measurements still hinders a more extensive acceptance of CT in coordinate metrology and industry. To ensure traceable, reliable, and accurate measurements, the determination of the task-specific measurement uncertainty is necessary. The German guideline VDI/VDE 2630 part 2.1 describes a procedure to determine the measurement uncertainty for CT experimentally by conducting several repeated measurements with a calibrated test specimen. However, this experimental procedure is cost and effort intensive. Therefore, the simulation of dimensional measurement tasks conducted with X-ray computed tomography can close these drawbacks. Additionally, recent developments towards a resource and cost-efficient production (“smart factory”) motivate the need for a corresponding numerical model of a CT system (“digital twin”) as well. As there is no standardized procedure to determine the measurement uncertainty of a CT system by simulation at the moment, the project series CTSimU was initiated, aiming at this gap. Concretely, the goal is the development of a procedure to determine the measurement uncertainty numerically by radiographic simulation. The first project (2019-2022), "Radiographic Computed Tomography Simulation for Measurement Uncertainty Evaluation - CTSimU" developed a framework to qualify a radiographic simulation software concerning the correct simulation of physical laws and functionalities. The most important outcome was a draft for a new guideline VDI/VDE 2630 part 2.2, which is currently under discussion in the VDI/VDE committee. The follow-up project CTSimU2 "Realistic Simulation of real CT systems with a basic-qualified Simulation Software" will deal with building and characterizing a digital replica of a specific real-world CT system. The two main targets of this project will be a toolbox including methods and procedures to configure a realistic CT system simulation and to develop tests to check if this replica is sufficient enough. The result will be a draft for a follow-up VDI/VDE guideline proposing standardized procedures to determine a CT system's corresponding characteristics and test the simulation (copy) of a real-world CT system which we call a "digital twin". T2 - 12th Conference on Industrial Computed Tomography (iCT) 2023 CY - Fürth, Germany DA - 27.02.2023 KW - dXCT KW - X-ray computed tomography KW - Simulation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589204 DO - https://doi.org/10.58286/27715 VL - 28 IS - 3 SP - 1 EP - 5 PB - NDT.net AN - OPUS4-58920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. C. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Schmid, M. A1 - Kißling, P. A. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM III/A 42.5N used for priority program DFG SPP 2005 "Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials" N2 - Two types of cements were selected as the reference cement in the priority program 2005 of the German Research Foundation (DFG SPP 2005). A thorough characterization of CEM I 42.5 R has been made in a recent publication. In this paper, the characterization data of the other reference cement CEM III/A 42.5 N are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The characterization data of the slag, which is the second main constituent of this specific cement besides the clinker, are presented independently. For all data received, the mean values and the corresponding errors were calculated. The data shall be used for the ongoing research within the priority program. Also, researchers from outside this priority program can benefit from these data if the same materials are used. KW - Cement KW - Slag KW - Characterization KW - DFG SPP 2005 PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568980 DO - https://doi.org/10.1016/j.dib.2020.105524 SN - 2352-3409 VL - 30 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-56898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bevilacqua, N. A1 - Asset, T. A1 - Schmid, M. A. A1 - Markötter, Henning A1 - Manke, I. A1 - Atanassov, P. A1 - Zeis, R. T1 - Impact of catalyst layer morphology on the operation of high temperature PEM fuel cells N2 - Electrochemical impedance spectroscopy (EIS) is a well-established method to analyze a polymer electrolyte membrane fuel cell (PEMFC). However, without further data processing, the impedance spectrum yields only qualitative insight into the mechanism and individual contribution of transport, kinetics, and ohmic losses to the overall fuel cell limitations. The distribution of relaxation times (DRT) method allows quantifying each of these polarization losses and evaluates their contribution to a given electrocatalyst's depreciated performances. We coupled this method with a detailed morphology study to investigate the impact of the 3D-structure on the processes occurring inside a high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC). We tested a platinum catalyst (Pt/C), a platinum-cobalt alloy catalyst (Pt3Co/C), and a platinum group metal-free iron-nitrogen-carbon (Fe–N–C) catalyst. We found that the hampered mass transport in the latter is mainly responsible for its low performance in the MEA (along with its decreased intrinsic performances for the ORR reaction). The better performance of the alloy catalyst can be explained by both improved mass transport and a lower ORR resistance. Furthermore, single-cell tests show that the catalyst layer morphology influences the distribution of phosphoric acid during conditioning. KW - High-temperature polymer electrolyte membrane fuel cell KW - Platinum-free catalyst KW - Mass transport KW - Oxygen reduction reaction KW - Distribution of relaxation times analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520917 DO - https://doi.org/10.1016/j.powera.2020.100042 VL - 7 SP - 100042 PB - Elsevier Ltd. AN - OPUS4-52091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Polami, S.M. A1 - Rethmeier, Michael A1 - Schmid, A. T1 - Friction welding of drive pinions for heavy-duty trucks T2 - 5. VDI-Fachtagung Welle-Nabe-Verbindungen CY - Nürtingen, Germany DA - 2012-09-25 PY - 2012 SN - 978-3-18-092176-1 SN - 0083-5560 N1 - Serientitel: VDI-Berichte – Series title: VDI-Berichte VL - 2176 SP - 211 EP - 219 PB - VDI-Verl. CY - Düsseldorf AN - OPUS4-27749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polami, S.M. A1 - Reinhardt, R. A1 - Rethmeier, Michael A1 - Schmid, A. T1 - Joint-site structure friction welding method as a tool for drive pinion light weighting in heavy-duty trucks N2 - To satisfy the applied compressive stresses of friction welded drive pinion fabricated by using the joint-site structure (JSS) method, three different variants were followed: (A) the initial design with two joints was carried out. Two different burn-off lengths were examined for this variant. (B) The optimum burn-off length was considered for only one weld zone. (C) The weld zone was moved radially from the initial location and two different gap sizes were compared. The smallest gap size for the third variant led to the largest weld length. The lack of structural welding defects for this variant was assessed by ultrasonic testing. Hardness of the material after friction welding (FW) was correlated to the Continuous Cooling Transformation (CCT) diagram of the used materials and revealed the phase/microstructure transformation of the material. The simulated applied stresses on the optimized friction welded design of the drive pinion showed suitable results. The new drive pinion friction welded by the JSS method reduced the weight of the component by approx. 14%. KW - Friction welding KW - Joint-site structure KW - Drive pinion KW - Lightweight design PY - 2014 DO - https://doi.org/10.1016/j.jmatprotec.2014.03.027 SN - 0924-0136 SN - 1873-4774 VL - 214 IS - 9 SP - 1921 EP - 1927 PB - Elsevier CY - Amsterdam AN - OPUS4-30718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polami, S.M. A1 - Häfele, P. A1 - Rethmeier, Michael A1 - Schmid, A. T1 - Study on fatigue behavior of dissimilar materials and different methods of friction-welded joints for drive pinion in trucks N2 - This work addresses the fatigue strength of friction-welded joints for the drive pinion in heavy-duty trucks. Three different friction welding (FW) variants were tested for the joint between the pinion and the bevel of the shaft: (1) conventional FW using series materials, (2) conventional FW from dissimilar materials for every part, and (3) dissimilar joints by applying joint-site structure of FW. Each joint variant was compared to the series production part using a 4-point bending test. Results showed that the higher strength material slightly improved the fatigue strength of the conventional friction-welded joints. Despite the light weight of the component joined structurally at the site, the joint revealed a lower endurance limit compared to other variants. However, there has been little discussion on the weld zone position. The applied equivalent stresses on the weld zone of the joint-site structure are less similar to the position for the conventional FW. Characterization of the failure explains the extraordinary behaviors in relation to S-N curves. PY - 2015 DO - https://doi.org/10.1007/s40194-015-0258-8 SN - 0043-2288 SN - 1878-6669 VL - 59 IS - 6 SP - 917 EP - 926 PB - Springer CY - Oxford AN - OPUS4-34841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Luch, A. A1 - Sogne, V. A1 - Maier, F. A1 - Burr, L. A1 - Schmid, D. A1 - Yoon, T.-H. A1 - Petters, R. A1 - Briffa, S.M. A1 - Valsami-Jones, E. T1 - Automation and Standardization—A Coupled Approach Towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis N2 - Whereas the characterization of nanomaterials using different analytical techniques is often highly automated and standardized, the sample preparation that precedes it causes a bottleneck in nanomaterial analysis as it is performed manually. Usually, this pretreatment depends on the skills and experience of the analysts. Furthermore, adequate reporting of the sample preparation is often missing. In this overview, some solutions for techniques widely used in nano-analytics to overcome this problem are discussed. Two examples of sample preparation optimization by au-tomation are presented, which demonstrate that this approach is leading to increased analytical confidence. Our first example is motivated by the need to exclude human bias and focuses on the development of automation in sample introduction. To this end, a robotic system has been de-veloped, which can prepare stable and homogeneous nanomaterial suspensions amenable to a variety of well-established analytical methods, such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), field-flow fractionation (FFF) or single-particle inductively coupled mass spectrometry (sp-ICP-MS). Our second example addresses biological samples, such as cells exposed to nanomaterials, which are still challenging for reliable analysis. An air–liquid interface has been developed for the exposure of biological samples to nanomaterial-containing aerosols. The system exposes transmission electron microscopy (TEM) grids under reproducible conditions, whilst also allowing characterization of aerosol composition with mass spectrometry. Such an approach enables correlative measurements combining biological with physicochemical analysis. These case studies demonstrate that standardization and automation of sample preparation setups, combined with appropriate measurement processes and data reduction are crucial steps towards more reliable and reproducible data. KW - Sample preparation KW - Automation KW - Nanomaterial analysis KW - Standardization PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543988 DO - https://doi.org/10.3390/molecules27030985 VL - 27 IS - 3 SP - 1 EP - 22 PB - MDPI AN - OPUS4-54398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Erich A1 - Valouch, M.A. T1 - Über die Dehnung sehr reiner Zinkkristalle (Original: Z. Physik Bd. 75, S. 531, 1932.) PY - 1932 IS - 14 SP - 216 PB - Springer CY - Berlin AN - OPUS4-28108 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Erich A1 - Valouch, M.A. T1 - Über sprunghafte Translation von Zinkkristallen PY - 1933 IS - 21 SP - 60 EP - 64 PB - Springer CY - Berlin AN - OPUS4-16813 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -