TY - JOUR A1 - Schiro, G. A1 - Müller, T. A1 - Verch, G. A1 - Sommerfeld, Thomas A1 - Mauch, Tatjana A1 - Koch, Matthias A1 - Grimm, V. A1 - Müller, M.E.H. T1 - The distribution of mycotoxins in a heterogeneous wheat field in relation to microclimate, fungal and bacterial abundance N2 - Aim: To observe the variation in accumulation of Fusarium and Alternaria mycotoxins across a topographically heterogeneous field and tested biotic (fungal and bacterial abundance) and abiotic (microclimate) parameters as explanatory variables. Methods and Results: We selected a wheat field characterized by a diversified topography, to be responsible for variations in productivity and in canopy-driven microclimate. Fusarium and Alternaria mycotoxins where quantified in wheat ears at three sampling dates between flowering and harvest at 40 points. Tenuazonic acid (TeA), alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), deoxynivalenol (DON), zearalenone (ZEN) and deoxynivalenol-3-Glucoside (DON.3G) were quantified. In canopy temperature, air and soil humidity were recorded for each point with data-loggers. Fusarium spp. as trichothecene producers, Alternaria spp. and fungal abundances were assessed using qPCR. Pseudomonas fluorescens bacteria were quantified with a culture based method. We only found DON, DON.3G, TeA and TEN to be ubiquitous across the whole field, while AME, AOH and ZEN were only occasionally detected. Fusarium was more abundant in spots with high soil humidity, while Alternaria in warmer and drier spots. Mycotoxins correlated differently to the observed explanatory variables: positive correlations between DON accumulation, tri 5 gene and Fusarium abundance were clearly detected. The correlations among the others observed variables, such as microclimatic conditions, varied among the sampling dates. The results of statistical model identification do not exclude that species coexistence could influence mycotoxin production. Conclusions: Fusarium and Alternaria mycotoxins accumulation varies heavily across the field and the sampling dates, providing the realism of landscapescale studies. Mycotoxin concentrations appear to be partially explained by biotic and abiotic variables. Significance and Impact of the Study: We provide a useful experimental design and useful data for understanding the dynamics of mycotoxin biosynthesis in wheat. KW - Alternaria KW - Deoxynivalenol KW - Food Safety KW - Fusarium KW - Pseudomonas fluorescens KW - Tenuazonic acid PY - 2019 DO - https://doi.org/10.1111/jam.14104 SN - 1365-2672 SN - 1364-5072 VL - 126 IS - 1 SP - 177 EP - 190 PB - Wiley AN - OPUS4-47161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, M.E.H. A1 - Steier, I. A1 - Köppen, Robert A1 - Proske, Matthias A1 - Korn, U. A1 - Koch, Matthias A1 - Siegel, David T1 - Cocultivation of phytopathogenic Fusarium and Alternaria strains affects fungal growth and mycotoxin production N2 - Aims: A laboratory study was conducted to evaluate the influence of cocultivation of toxigenic Fusarium (F.) and Alternaria (A.) fungi with respect to growth and mycotoxin production. Methods and Results: Fusarium culmorum Fc13, Fusarium graminearum Fg23 and two Alternaria tenuissima isolates (At18 and At220) were simultaneously or consecutively co-incubated on wheat kernels in an in vitro test system. Fungal biomass was quantified by determining ergosterol content. Three Fusarium toxins (DON, NIV and ZON) and three Alternaria toxins (AOH, AME and ALT) were analysed by a newly developed HPLC/MS/MS method. In simultaneous cocultures, the fungal biomass was enhanced up to 460% compared with individual cultures; Alternaria toxins were considerably depressed down to <5%. Combining At18 and At220 with Fg23 inhibited the toxin production of both fungal partners. In contrast, Fc13 increased its DON and ZON production in competitive interaction with both A. strains. Conclusions: The interfungal competitive effects aid the understanding of the processes of competition of both fungi in natural environments and the involvement of mycotoxins as antifungal factors. Significance and Impact of Study: Cocultivation significantly affects fungal growth and mycotoxin production of phytopathogenic Alternaria and Fusarium strains. The impact of mycotoxins on the interfungal competition is highlighted. KW - Alternaria KW - Cocultivation KW - Ergosterol KW - Fusarium KW - Interfungal competition KW - Multimycotoxin analysis PY - 2012 DO - https://doi.org/10.1111/j.1365-2672.2012.05388.x SN - 1364-5072 VL - 113 IS - 4 SP - 874 EP - 887 PB - Wiley-Blackwell CY - Malden, Mass., USA AN - OPUS4-26932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maul, Ronald A1 - Müller, C. A1 - Rieß, Stephanie A1 - Koch, Matthias A1 - Methner, F.-J. A1 - Nehls, Irene T1 - Germination induces the glucosylation of the Fusarium mycotoxin deoxynivalenol in various grains N2 - In food, the mycotoxin deoxynivalenol (DON) often occurs in conjunction with its 3-β-D-glucopyranoside (D3G). The transformation of DON to D3G through glucosylation is catalysed by plant enzymes, however, the exact circumstances are not well understood. In order to investigate the role of enzymatic glucosylation in germinating grains, DON treated kernels were steeped and germinated under laboratory conditions. Furthermore, the effect of malting on the DON content of the contaminated barley was investigated. In all cases, DON and its derivatives were quantified by HPLC-MS/MS before, during and after the experiments. Amongst the six tested cereals; wheat, rye, barley, spelt, and millet transformed DON to D3G during germination whilst the oats were inactive. For wheat, barley, and spelt the initial DON content was reduced by 50%, with the loss being almost entirely accounted for by D3G formation. As D3G might be cleaved during digestion, the elevated D3G concentration may obscure the toxicologically relevant DON content in processed food and beer. The germination process has a major influence on the 'masking' of DON, leading to high quantities of D3G that may be missed in common mycotoxin analyses. KW - Mycotoxins KW - Masked mycotoxins KW - Deoxynivalenol (DON) KW - DON-3-glucoside KW - Acetyl-DON KW - Germination KW - Malting PY - 2012 DO - https://doi.org/10.1016/j.foodchem.2011.08.077 SN - 0308-8146 VL - 131 IS - 1 SP - 274 EP - 279 PB - Elsevier CY - Amsterdam [u.a.] ; Jena AN - OPUS4-25732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Müller, Ralf A1 - Schadrack, Reinhard A1 - Michaelis, Matthias A1 - Emmerling, Franziska A1 - Reuther, H. A1 - Menzel, Michael T1 - Evidence of formation of the tridymite form of AlPO4 in some municipal sewage sludge ashes N2 - Evidence is provided that the tridymite component observed in the X-ray diffraction patterns of some sewage sludge ashes (SSAs) should not be interpreted as the tridymite modification of SiO2 but as the tridymite form of AlPO4. This proof is based on a combined X-ray Powder Diffraction (XRD), X-ray fluorescence (XRF) and Mossbauer spectroscopy investigation of two SSAs produced at two fluidized bed incineration facilities, located in different municipalities and operated differently. The structural and chemical characterization was carried out on the 'as received' SSA samples as well as on the residues of these two SSAs pretreated by leaching in citric acid. In addition, direct proof is presented that the tridymite form of AlPO4 does crystallize from X-ray amorphous precursors under conditions that mimic the huge heating rate and short retention time (just seconds at T ≈ 850 °C) typical for fluidized bed incinerators. KW - Aluminium phosphate KW - Ash KW - Fly ash KW - Incinerator ash KW - Sewage sludge ash KW - Tridymite form PY - 2013 DO - https://doi.org/10.1017/S0885715613000869 SN - 0885-7156 VL - 28 IS - S2 SP - S425 EP - S435 PB - JCPDS CY - Swarthmore, Pa. AN - OPUS4-29703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Kammermeier, Michael A1 - Müller, Maximilian A1 - Strangfeld, Christoph T1 - RFID sensor systems embedded in concrete – systematical investigation of the transmission characteristics N2 - Long-term completely embedded sensor systems offer innovative possibilities for structural health monitoring of concrete structures. Measuring of relevant parameters, e.g., temperature, humidity, or indication of corrosion can be performed with low energy sensors. This allows to implement passive RFID sensor systems without cable connection and battery, which are power supplied exclusively by the electromagnetic field from the external reader device. To evaluate characteristics and conditions of this concept, a systematical investigation of the transmission characteristics with variation of relevant parameters, as communication frequency, installation depth, type of concrete, moisture content, etc. is currently carried out in an interdisciplinary research project at BAM. First results are presented in this paper. T2 - 8th European Workshop On Structural Health Monitoring CY - Bilbao, Spain DA - 05.07.2016 KW - Structural health monitoring KW - Embedded sensor KW - Energy harvesting KW - Wireless sensors KW - RFID sensors KW - Transmission characteristics PY - 2016 SP - 1 EP - 5 AN - OPUS4-37129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Johann, Sergej A1 - Müller, Maximilian A1 - Bartholmai, Matthias T1 - Moisture Measurements with RFID based Sensors in Screed and Concrete N2 - To quantify the moisture in concrete, RFID based humidity sensors are embedded. Passive high frequency, ultra-high frequency RFID tags as well as active Bluetooth sensors are tested. After concreting, all sensors measure the corresponding relative humidity to monitor the concrete moisture. Two case studies are performed, embedding in an existing construction, i.e. the duraBASt test bridge, and embedding in cement based mortar in the laboratory. As basis for robust and long-life sensors in alkaline concrete, different casing materials are tested. Furthermore, signal strength measurements and their sensitivity to different moisture levels are performed. T2 - 8th European Workshop On Structural Health Monitoring CY - Bilbao, Spain DA - 05.07.2016 KW - Humidity sensors KW - Moisture measurements KW - RFID based sensors KW - DuraBASt PY - 2016 SP - 1 EP - 10 AN - OPUS4-36817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Müller, Maximilian A1 - Bartholmai, Matthias ED - Aulova, Alexandra ED - Rogelj Ritonja, Alenka ED - Emri, Igor T1 - RFID sensor systems embedded in concrete - requirements for long-term operation N2 - One of the more difficult tasks for structural health monitoring is the continuous evaluation of the stability and load capacity of the building materials. This knowledge can be won, e.g., by taking material samples at the examining place with the drawback of partly destroying the structure. To avoid this, modern sensor and communication technologies offer promising methods for non-destructive testing. To address the tasks for monitoring of concrete structures, in the presented study, different sensors were combined with RFID transponders and embedded in concrete components. T2 - 33rd Danubia - Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Structure health monitoring KW - Concrete KW - Embedded KW - RFID sensors PY - 2016 SN - 978-961-94081-0-0 SP - 68 EP - 69 CY - Ljubljana AN - OPUS4-37535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Kammermeier, Michael A1 - Müller, Maximilian A1 - Strangfeld, Christoph T1 - Transmission characteristics of RFID sensor systems embedded in concrete N2 - Completely embedded sensor systems for long-term operation offer innovative possibilities for structural health monitoring of concrete structures. Measuring of relevant parameters, e.g., temperature, humidity, or indication of corrosion can be performed with low energy sensors. This allows to implement passive RFID sensor systems without cable connection and battery, which are power supplied exclusively by the electromagnetic field from the external reader device. To evaluate characteristics and conditions of this concept, a systematical investigation of the transmission characteristics with variation of relevant parameters, as communication frequency, installation depth, type of concrete, moisture content, etc. is currently carried out in an interdisciplinary research project at BAM. First results are presented in this paper. T2 - IEEE Sensors 2016 CY - Orlando, FL, USA DA - 30.10.2016 KW - Embedded sensors KW - Energy harvesting KW - Wireless sensors KW - RFID sensors KW - Transmission characteristics KW - Structural health monitoring PY - 2016 SN - 978-1-4799-8287-5 SN - 1930-0395 SP - 1541 EP - 1543 PB - IEEE AN - OPUS4-38388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, M.E.H. A1 - Urban, K. A1 - Köppen, Robert A1 - Siegel, David A1 - Korn, U. A1 - Koch, Matthias T1 - Mycotoxins as antagonistic or supporting agents in the interaction between phytopathogenic Fusarium and Alternaria fungi N2 - The role of mycotoxins in the microbial competition in an ecosystem or on the same host plant is still unclear. Therefore, a laboratory study was conducted to evaluate the influence of mycotoxins on growth and mycotoxin production of Fusarium and Alternaria fungi. Fusarium culmorum Fc13, Fusarium graminearum Fg23 and two Alternaria tenuissima isolates (At18 and At220) were incubated on wheat kernels supplemented with alternariol (AOH), tetramic acid derivates (TeA), deoxynivalenol (DON) and zearalenone (ZEA) in an in vitro test system. Fungal biomass was quantified by determining ergosterol content. Three Fusarium toxins (DON, nivalenol and ZEA) and three Alternaria toxins (AOH, alternariol methyl ether (AME) and altenuene) were analysed by HPLC-MS/MS. If Alternaria strains grew in wheat kernels spiked with Fusarium mycotoxins, their growth rates were moderately increased, their AOH and AME production was enhanced and they were simultaneously capable of degrading the Fusarium mycotoxins DON and ZEA. In contrast, both Fusarium strains behaved quite differently. The growth rate of Fc13 was not distinctly influenced, while Fg23 increased its growth in wheat kernels spiked with AOH. TeA depressed the ergosterol content in Fc13 as well as in Fg23. The DON production of Fc13 was slightly depressed, whereas the ZEA production was significantly increased. In contrast, Fg23 restricted its ZEA production. Both Fusarium strains were not capable of degrading the Alternaria mycotoxin AOH. Mycotoxins might play an important role in the interfungal competitive processes. They influence growth rates and mycotoxin production of the antagonistic combatants. The observed effects between phytopathogenic Alternaria and Fusarium strains and their mycotoxins aid the understanding of the complexity of microbial competitive behaviour in natural environments. KW - Phytopathogen KW - Trichothecenes KW - Alternaria mycotoxins KW - Multi-mycotoxin analysis KW - Inter-fungal competition PY - 2015 DO - https://doi.org/10.3920/WMJ2014.1747 SN - 1875-0710 SN - 1875-0796 VL - 8 IS - 3 SP - 311 EP - 321 PB - Wageningen Academic Publishers CY - Wageningen AN - OPUS4-32849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Müller, Ralf A1 - Michaelis, Matthias A1 - Krahl, T. A1 - Emmerling, Franziska T1 - Nanocrystalline and stacking-disordered beta-cristobalite AlPO4: the now deciphered main constituent of a municipal sewage sludge ash from a full-scale incineration facility N2 - For the first time evidence is provided that a nanocrystalline and stacking-disordered, chemically stabilized β-cristobalite form of AlPO4 occurs in a sewage sludge ash (SSA). This proof is based on a combined X-ray powder diffraction and X-ray fluorescence investigation of an SSA produced at a large-scale fluidized bed incineration facility serving a catching area with a population of 2 million. The structural and chemical characterization was carried out on 'as received' SSA samples as well as on solid residues remaining after leaching this SSA in sodium hydroxide solution. Thus, it was ascertained that the observed nanocrystalline and stacking-disordered cristobalite-like component belongs to the aluminum phosphate component of this SSA, rather than to its silicon dioxide component. In addition, a direct proof is presented that the chemically stabilized β-cristobalite form of AlPO4 does crystallize from X-ray amorphous precursors under conditions that mimic the huge heating rate and short retention time (just seconds at T ≈ 850°C), typical for fluidized bed incinerators. KW - Aluminum phosphate KW - Chemical stabilization of high-temperature forms KW - Cristobalite form KW - Stacking disorder KW - Incinerator ash KW - Sewage sludge ash PY - 2015 DO - https://doi.org/10.1017/S0885715614001213 SN - 0885-7156 VL - 30 IS - Supplement S 1 SP - S31 EP - S35 PB - JCPDS CY - Swarthmore, Pa. AN - OPUS4-33435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Impact Analysis of RAM Packages under Kinematic Aspects N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behavior of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. T2 - PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - RAM packages KW - Drop test KW - Impact KW - Radioactive PY - 2016 UR - http://www.patram2016.org/ SP - Paper 1030, 1 AN - OPUS4-38859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trajkovski, B. A1 - Jaunich, Matthias A1 - Müller, W. A1 - Beuer, F. A1 - Zafiropoulos, G. A1 - Houshmand, A. ED - Eppel, S.J. T1 - Hydrophilicity, viscoelastic, and physicochemical properties variations in dental bone grafting substitutes N2 - The indication-oriented Dental Bone Graft Substitutes (DBGS) selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties’ influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA) of xenograft (cerabone®), synthetic (maxresorb®), and allograft (maxgraft®, Puros®) blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone® and maxresorb® blocks showed a slight height decrease in wet state, whereas both maxgraft® and Puros® had an almost identical height increase. In addition, cerabone® and maxresorb® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft® and Puros® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone®, Bio-Oss®, NuOss®, SIC® nature graft) and synthetic DBGS granules (maxresorb®, BoneCeramic®, NanoBone®, Ceros®). The highest level of hydrophilicity was detected in cerabone® and maxresorb®, while Bio-Oss® and BoneCeramic® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this study initiates a new insight into the DBGS differences and their importance for successful clinical results. KW - Biomaterials KW - Bone grafting KW - Bone substitutes KW - Hydrophilicity KW - Mechanical analysis PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-439890 DO - https://doi.org/10.3390/ma11020215 SN - 1996-1944 VL - 11 IS - 2 SP - Article 215, 1 EP - 19 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-43989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Kinematic aspects of RAM packages drop tests N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behavior of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Drop KW - Test KW - Measurement KW - Analysis KW - Prototyp PY - 2018 SP - Paper 18149, 1 EP - 12 AN - OPUS4-44872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, A. A1 - Lischeid, G. A1 - Koch, Matthias A1 - Lentzsch, P. A1 - Sommerfeld, Thomas A1 - Müller, M.H. T1 - Co-Cultivation of Fusarium, Alternaria, and Pseudomonas on Wheat-Ears Affects Microbial Growth and Mycotoxin Production N2 - Mycotoxigenic fungal pathogens Fusarium and Alternaria are a leading cause of loss in cereal production. On wheat-ears, they are confronted by bacterial antagonists such as pseudomonads. Studies on these groups’ interactions often neglect the infection process’s temporal aspects and the associated priority effects. In the present study, the focus was on how the first colonizer affects the subsequent ones. In a climate chamber experiment, wheat-ears were successively inoculated with two different strains (Alternaria enuissima At625, Fusarium graminearum Fg23, or Pseudomonas simiae Ps9). Over three weeks, microbial abundances and mycotoxin concentrations were analyzed and visualized via Self Organizing Maps with Sammon Mapping (SOM-SM). All three strains revealed different characteristics and strategies to deal with co-inoculation: Fg23, as the first colonizer, suppressed the establishment of At625 and Ps9. Nevertheless, primary inoculation of At625 reduced all of the Fusarium toxins and stopped Ps9 from establishing. Ps9 showed priority effects in delaying and blocking the production of the fungal mycotoxins. The SOM-SM analysis visualized the competitive strengths: Fg23 ranked first, At625 second, Ps9 third. Our findings of species-specific priority effects in a natural environment and the role of the mycotoxins involved are relevant for developing biocontrol strategies. KW - Antagonists KW - Microbe interactions KW - Mycotoxins KW - Priority effect KW - SOM-SM PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521554 DO - https://doi.org/10.3390/microorganisms9020443 VL - 9 IS - 2 SP - 443 PB - MDPI AN - OPUS4-52155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Johann, Sergej A1 - Müller, Maximilian A1 - Bartholmai, Matthias T1 - Embedded passive RFID-based sensors for moisture monitoring in concrete N2 - Damages in infrastructure due to moisture amount to billions of Euros every year. For a more predictive structural health monitoring in civil engineering, the detection and monitoring of hazardous moisture in steel reinforced concrete constructions is of high interest. The sensors have to be wireless, elsewise they weaken the concrete cover of the rebars. The lifetime of such constructions is normally decades, thus the sensors have to be battery-free and fully passive. Considering these requirements, passive RFID-based sensors are developed. Communication and energy supply are realized wireless via the electromagnetic field of a RFID transmitter. The passive RFIDbased sensors are embedded into the concrete to enable the monitoring of moisture transport in porous materials. Results of the hydration process are shown. T2 - IEEE Sensors 2017 CY - Glasgow, Scotland, UK DA - 30.10.2017 KW - Embedded sensors KW - Wireless sensors KW - Passive sensors KW - RFID-based sensors KW - Structural health monitoring KW - Moisture PY - 2017 SN - 978-1-5386-4056-2 DO - https://doi.org/10.1109/ICSENS.2017.8234166 SP - 870 EP - 872 PB - IEEE AN - OPUS4-43033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Herbrand, Martin A1 - Müller, Matthias T1 - Codawelleninterferometrie zur Detektion von Spannungszuständen in Betonbauteilen N2 - Informationen zu in Betonbauteilen stattfindenden Umlagerungsprozessen sowie Druckspannungsverteilungen können mit konventioneller Messtechnik bislang nicht zweifelsfrei beantwortet werden. Ultraschallmessungen mit eingebetteten Sensoren könnten hier eine sinnvolle Ergänzung zur konventionellen Messtechnik sein. Durch Einsatz der Codawelleninterferometrie (CWI) sind hiermit schon sehr kleine Änderungen im Material detektierbar. Um diese neue Methodik zu evaluieren, wurde das Forschungsprojekt „Querkrafttragfähigkeit von Spannbetonbrücken – Erfassung von Spannungszuständen in den Spannbetonversuchsträgern mit Ultraschallsensoren“ durch die Bundesanstalt für Straßenwesen (BASt) initiiert. In diesem Projekt wurden durch die Bundesanstalt für Materialforschung und –prüfung (BAM) Ultraschall-Transducer in mehrere Spannbetonträger des Instituts für Massivbau der RWTH Aachen eingebettet, die anschließend bis zum Bruch belastet wurden. Der Belastungsversuch an einem der Spannbetondurchlaufträger zeigte das große Potential dieser Methodik. Die im Netzwerk erfassten Änderungen der Ultraschallwellengeschwindigkeit geben die Spannungsverhältnisse im Längsschnitt des Trägers schon bei sehr niedrigen Belastungen qualitativ richtig wieder und zeigen bei hohen Belastungen eine gute Korrelation zum Rissbild. Dabei weisen räumliche Anomalien und Änderungen in der Charakteristik der Geschwindigkeitsänderungen oft schon auf Rissbildung hin, wenn diese noch nicht an der Oberfläche sichtbar ist. Dies zeigt das Potential im Hinblick auf eine Frühwarnung. Hierfür und ebenso in Bezug auf eine Quantifizierung der Effekte ist aber noch Entwicklungsarbeit notwendig. Ein Vorteil der Methodik ist, dass die Transducer nicht direkt am Ort der Änderung platziert werden müssen und einen relativ großen Bereich um die Transducer herum erfassen. T2 - DGZfP Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Ultraschall KW - Monitoring KW - Codawelleninterferometrie KW - Brückenträger PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448642 SP - Mo.3.A.4, 1 EP - 8 PB - DGZfP AN - OPUS4-44864 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pohl, Rainer A1 - Casperson, Ralf A1 - Maierhofer, Christiane A1 - Müller, Jan A1 - Pelkner, Matthias T1 - Gegenüberstellung von Wirbelstromprüfung und aktiver Thermografie an CFK-Versuchskörpern N2 - In vielen Bereichen der Technik haben Konstruktionen unter Einsatz von CFK-Bauteilen und Komponenten die klassischen Metalle abgelöst. Die zerstörungsfreie Prüfung solcher CFK-Bauteile gewinnt somit zunehmend an Bedeutung. Ein mögliches Prüfverfahren ist dabei die Wirbelstromprüfung. Aufgrund der relativ geringen elektrischen Leitfähigkeit von CFK-Komponenten kommt hierbei häufig die sogenannte HF-Wirbelstromprüfung zum Einsatz. In verschiedenen Untersuchungen der BAM konnten jedoch auch mit Wirbelstromprüfsystemen in niedrigen Frequenzbereichen gute Ergebnisse erzielt werden. Um die Möglichkeiten und Grenzen dieser konventionellen Wirbelstromprüfung auszuloten, wurden Messungen an Versuchskörpern durchgeführt, welche bereits bei der Validierung der Blitz- und Lock-in-Thermografie für neue Verfahrensnormen erfolgreich eingesetzt wurden. Ein Typ dieser Versuchskörper sind Flachproben aus CFK von 6 mm Dicke. In diesen wurden Flachbodenbohrungen mit Durchmessern zwischen 4 mm und 24 mm eingebracht. Die Restwandstärken liegen zwischen 0,06 mm und 3,66 mm. Ein weiterer CFK-Versuchskörper hat die Geometrie eines Stufenkeiles. Bei verschiedenen Stufenkeilen sind Wanddicken zwischen 1,4 mm und 5,4 mm realisiert worden. In diesen wurden künstliche quadratische Delaminationen mit Kantenlängen zwischen 2 mm und 20 mm eingebracht. Die Ergebnisse der Wirbelstromprüfung werden denen der aktiven Thermografie gegenübergestellt. Zur Nachbildung von Kompositwerkstoffen wurden die flachen Versuchskörper mit geeigneten Versuchskörpern aus Aluminium und Stahl kombiniert. Die Wirbelstromprüfungen wurden mit einem handelsüblichen Prüfgerät im Frequenzbereich zwischen 500 Hz und 3 MHz und entsprechend angepassten Sensoren durchgeführt. T2 - DGZfP Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - Wirbelstromprüfung KW - Aktive Thermografie KW - CFK PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-403607 SN - 978-3-940283-85-6 VL - 162 SP - 1 EP - 10 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-40360 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Knigge, Xenia A1 - Mezera, Marek A1 - Weise, Matthias A1 - Sahre, Mario A1 - Wasmuth, Karsten A1 - Voss, Heike A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Chemical and topographical changes upon sub-100-nm laser-induced periodic surface structure formation on titanium alloy: the influence of laser pulse repetition rate and number of over-scans N2 - Titanium and its alloys are known to allow the straightforward laser-based manufacturing of ordered surface nanostructures, so-called high spatial frequency laser-induced periodic surface structures (HSFL). These structures exhibit sub-100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, multi-method characterizations were performed here for HSFL processed on Ti–6Al–4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm, ≈1 ps pulse duration, 1–400 kHz) under different laser scan processing conditions, i.e., by systematically varying the pulse repetition frequency and the number of laser irradiation passes. The sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), tactile stylus profilometry, as well as near-surface chemical analyses hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (ToF-SIMS). This provides a quantification of the laser ablation depth, the geometrical HSFL characteristics and enables new insights into the depth extent and the nature of the non-ablative laser-induced near-surface oxidation accompanying these nanostructures. This allows to answer the questions how the processing of HSFL can be industrially scaled up, and whether the latter is limited by heat-accumulation effects. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-of-flight secondary ion mass spectrometry (ToF-SIMS) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589902 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/pssa.202300719 DO - https://doi.org/10.1002/pssa.202300719 SN - 1862-6319 VL - 220 SP - 1 EP - 12 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, Heike A1 - Knigge, Xenia A1 - Knapic, D. A1 - Weise, Matthias A1 - Sahre, Mario A1 - Hertwig, Andreas A1 - Sacco, A. A1 - Rossi, A. M. A1 - Radnik, Jörg A1 - Müller, Kai A1 - Wasmuth, Karsten A1 - Krüger, Jörg A1 - Hassel, A. W. A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Picosecond laser processing of hierarchical micro–nanostructures on titanium alloy upon pre- and postanodization: morphological, structural, and chemical effects N2 - Recent publications indicate that the order of electrochemical anodization (before or after the laser processing step) plays an important role for the response of bone-forming osteoblasts—an effect that can be utilized for improving permanent dental or removable bone implants. For exploring these different surface functionalities, multimethod morphological, structural, and chemical characterizations are performed in combination with electrochemical pre- and postanodization for two different characteristic microspikes covered by nanometric laser-induced periodic surface structures on Ti–6Al–4V upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ≈1 ps pulse duration, 67 and 80 kHz pulse repetition frequency) at two distinct sets of laser fluence and beam scanning parameters. This work involves morphological and topographical investigations by scanning electron microscopy and white light interference microscopy, structural material examinations via X-ray diffraction, and micro-Raman spectroscopy, as well as near-surface chemical analyses by X-ray photoelectron spectroscopy and hard X-ray photoelectron spectroscopy. The results allow to qualify the mean laser ablation depth, assess the spike geometry and surface roughness parameters, and provide new detailed insights into the near-surface oxidation that may affect the different cell growth behavior for pre- or postanodized medical implants. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Hierarchical micro-nanostructures KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Ti-6Al-4V alloy KW - X-ray photoelectron spectroscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601962 DO - https://doi.org/10.1002/pssa.202300920 SN - 1862-6319 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-60196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Müller, Maximilian A1 - Mieller, Björn A1 - Bartholmai, Matthias T1 - RFID sensor systems embedded in concrete – validation experiments for long-term monitoring N2 - Structural Health Monitoring (SHM) is an important part of buildings surveillance and maintenance to detect material failure as early as possible and to contribute in protection of structures and their users. The implementation of Radio Frequency Identification (RFID) sensor systems without cable connection and battery into building components offers innovative possibilities to enable long-term in-situ SHM of addressed structures, bridges. The objectives of the presented study are complete embedding of RFID sensors systems in concrete, full passive communication with the systems, at best for the whole life span of structures. One challenge for this task is the highly alkaline environment in concrete, which requires non-degrading and robust encapsulation. Further Requirements are passive communication and energy supply, appropriate antenna design, placement and fixation in concrete, and the selection and implementation of sensors and connections. The concept is to develop and optimize a simple and robust system, which meets the requirements, as well as comprehensive validation in concrete specimen and real world applications. Two different systems were developed (HF and UHF RFID, respectively). First tasks were the implementation of analog sensors using the superposition principle for the signal adaption. Investigation of suitable materials for robust encapsulation and sensor protection against basic environments. Four materials were investigated in pH 13 solution for 14 days - 3D-Printer-Polymer was completely resolved - PVC has no noticeable decrease in weight - (VitaPro) glass filter for the sensor protector, has weight loss 2.7 % - The epoxy resin has increased by 1.8 % due to moisture expansion Different concrete samples were prepared for the validation of the systems. RFID sensors were embedded in different integration depths. Investigate the energy- and data transfer through concrete, also with varying moisture content. Additionally, signal strength data was used to optimize and validate the antenna characteristics in concrete. Next steps are to guarantee a sufficient energy supply for UHF RFID systems embedded in different concrete mixtures and further embedding the HF and UHF RFID systems in real bridges and buildings to validate the long term monitoring. T2 - DGZfP-Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - Smart structures KW - RFID sensors KW - Long-term requirements KW - Structural health monitoring KW - Passive RFID KW - Sensor requirements KW - Sensors in concrete PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-403496 UR - https://www.ndt.net/?id=21499 SN - 1435-4934 VL - 22 IS - 9 SP - 1 EP - 7 PB - NDT.net CY - Kirchwald AN - OPUS4-40349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -