TY - CONF A1 - Auersch, Lutz T1 - Predicted and measured amplitude-speed relations of railway ground vibrations at four German sites with different test trains N2 - The present contribution evaluates four measuring series made by the Federal Institute of Material Research and Testing for the relations between train speed and ground vibration amplitudes. This experimental evaluation is supported by the simulation of the train passages at the different sites by using appropriate excitation mechanisms and forces as well as layered soil models which have been derived from impact measurements at each site. T2 - 13th International Workshop on Railway Noise and Vibration CY - Leuven, Belgium DA - 16.09.2019 KW - Excitation forces KW - Train speed KW - Ground vibration KW - Layered soils PY - 2019 AN - OPUS4-49444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Bahnerschütterungen bei verschiedenen Böden und Zuggeschwindigkeiten – Messungen in Deutschland, Österreich und der Schweiz N2 - Die Bundesanstalt für Materialforschung und -prüfung hat in den letzten 30 Jahren an vielen Orten Bahnerschütterungen gemessen. Dabei wurden immer auch Versuche zur Bestimmung der Bodeneigen-schaften durchgeführt, meist mit Hammeranregung, gelegentlich auch mit Schwingeranregung. Es werden verschiedene Auswertemethoden wie Seismogramm-Montage, Spektrale Analyse (SASW), Multistation Analysis of Surface Waves (MASW), f,v-Analyse (Dispersion aus zweifacher Fourier-Analyse), Spatial AutoCorrelation (SPAC, hier auch für deterministische Quellen) vorgestellt. Durch Approximation der frequenzabhängigen Wellengeschwindigkeiten (Dispersion) oder der gemessenen Übertragungsfunktionen erhält man ein passendes Bodenmodell. Zu diesem Bodenmodell kann man dann die Übertragungsfunktionen für Hammer- und Zuganregung berechnen. Mit allgemeinen oder spezifischen Achslastspektren werden dann die Bahnerschütterungen prognostiziert und mit den Messergebnissen verglichen. Bei etlichen Messorten, insbesondere in der Schweiz, wurden deutliche Merkmale einer Bodenschichtung beobachtet. Es ergibt sich eine deutliche Reduktion der tiefen Frequenzanteile durch den steifen unterliegenden Halbraum. Die weiche Deckschicht bestimmt das hochfrequente Verhalten. Hier bewirkt die Materialdämpfung des Bodens oft einen starken Amplitudenabfall, sowohl mit der Entfernung als auch mit der Frequenz. Für den verbleibenden mittelfrequenten Anteil wurde an mehreren Messorten die Amplituden-Fahrgeschwindigkeits-Gesetzmäßigkeiten untersucht. Es gibt konstante bis stark ansteigende Amplituden, und es zeigt sich auch hier, dass der geschichtete Boden von entscheidender Bedeutung ist. T2 - 16. D-A-CH Tagung Erdbebeningenieurwesen & Baudynamik (D-A-CH 2019) CY - Innsbruck, Austria DA - 26.09.2019 KW - Zuggeschwindigkeit KW - Wellengeschwindigkeit KW - Dispersionsmessung KW - Bodenübertragungsfunktion KW - Bahnerschütterungen PY - 2019 AN - OPUS4-49445 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Four typical errors in train induced ground vibration and ground vibration mitigation N2 - Mitigation measures of railway induced vibration have been demonstrated at the emission, transmission and immission part. It must be carefully observed that the correct masses and stiffnesses are used. Typical mistakes have been shown, - 1D models for vehicle-track interaction, - impedance instead of stiffness for the infill material of a trench, - rigid buildings or neglecting the soil-building interaction. The dominant mid-frequency part of the ground vibration is due to the irregular soil. T2 - ISO/TC 108/SC 2/WG 8 Working group Ground-borne noise and vibration from rail systems CY - Milano, Italy DA - 14.10.2019 KW - Ground vibration KW - Train excitation KW - Mitigation PY - 2019 AN - OPUS4-49446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Berechnung und Beeinflussung von Deckeneigenfrequenzen N2 - Es werden Erfahrungen zur Berechnung von Deckeneigenfrequenzen aus zahlreichen Projekten zusammengetragen. T2 - Projektbesprechung zum Hotelneubau CY - Berlin, Germany DA - 10.07.2019 KW - Deckeneigenfrequenzen PY - 2019 AN - OPUS4-49448 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Ziemens, Susanne T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 13.11.2020 KW - Building vibration KW - Office building KW - Residential building KW - Soil-building resonance KW - Floor resonance KW - Column/wall resonance PY - 2020 SN - 978-618-85072-2-7 SP - 4560 EP - 4576 CY - Athen AN - OPUS4-51678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Ziemens, Susanne T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Building vibration PY - 2020 AN - OPUS4-51679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Dynamic track-soil interaction – calculations and measurements about slab and ballast tracks N2 - The dynamic behaviour of slab and ballast tracks has been investigated by measurements and calculations. Hammer impacts and train passages have been analysed. Measurements have been performed by geophones (velocity transducers) which have been time-integrated to displacements. The calculations are done in frequency-wavenumber domain for multi-beam-on-continuous soil models. The characteristics of the different tracks and track elements have been established in theory and experiment. The frequency-dependent compliances (displacement transfer functions) show clear rail-on-rail-pad resonances or highly damped track-soil resonances. Compared to the rail and sleeper, the track plate has much lower amplitudes. The slab track has usually the highest rail amplitudes due to soft rail pads. The train passage yields track displacements which are a superposition of the axle loads from the two neighbouring axles of a bogie and from the two bogies of two neighbouring carriages. This global behaviour is characteristic for the track plate of the slab track whereas the rails of the slab and the ballast track behave more local with only one bogie of influence. The measurements agree very well with the theory of the continuous soil in case of the six measured slab tracks and acceptably well for the six measured ballast tracks. The measurements allow to find appropriate model parameters and to check the models, for example the Winkler model of the soil has been found less appropriate as it reacts more locally. KW - Slab track KW - Ballast track KW - Train passage KW - Hammer impact KW - Track-soil interaction PY - 2021 U6 - https://doi.org/10.1631/jzus.A1900651 SN - 1673-565X VL - 22 IS - 1 SP - 21 EP - 36 PB - Zhejiang University Press CY - Hangzhou AN - OPUS4-52107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Berechnung der Erschütterungsminderung von Eisenbahngleisen mit ein- und zweidimensionalen Modellen N2 - Eindimensionale Modelle des Gleises aus einem Schienenstützpunkt, zweidimensionale Modelle enthalten die Kraftverteilung der Schiene. Eindimensionale Modelle machen einen Fehler, weil sie eine zu große Fahrzeugmasse berücksichtigen. Man kann jedoch bei der Berechnung der Minderungswirkung von Gleiselementen eindimensionale Gleismodelle verwenden, um die Kraftübertragung des Gleises bzw. die Minderungswirkung des Gleises zu berechnen. Die Wechselwirkung mit dem Fahrzeug kann einfach mit der dynamischen Stützpunktsteifigkeit berechnet werden. Dabei muss die Stützpunktsteifigkeit mit einer charakteristischen Gleislänge multipliziert werden, die frequenz- und systemabhängig ist. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Munich, Germany DA - 14.01.2020 KW - Richtige Fahrzeugmasse KW - Erschütterungsminderung KW - Elastische Gleiselemente KW - Rechenverfahren PY - 2020 AN - OPUS4-50268 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Train-induced ground vibration due to the irregularities of the soil N2 - Many measurements of train induced ground vibrations show high amplitudes for a certain mid-frequency range. This ground vibration component cannot be well explained by dynamic loads of the train. Many characteristics indicate that the axle impulses, which are scattered by an irregular soil, are the excitation. This new understanding of railway-induced ground vibration is verified by numerical analysis. The response of the regular homogeneous and irregular inhomogeneous soils has been calculated by the finite-element method in frequency domain. A specific superposition of the impulse responses has been invented including time shift, axle sequence, track filter and hanning filter. The superposition yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil of which the stiffness varies randomly in space, the superposition yields a mid-frequency ground vibration component from the scattering of the axle impulses. The existence and the importance of this component can thus be demonstrated by the calculations. Some rules of the influence of distance, train speed, soil stiffness, strength and width of the stiffness variation have been derived from the calculations. Many measurements show the unique explanation of the mid-frequency ground vibration component by the scattered axle impulses. KW - Train-induced ground vibration KW - Static axle loads KW - Quasi-static response; KW - Axle impulses KW - Irregular soil KW - Random stiffness variation KW - Scattered axle impulses PY - 2021 U6 - https://doi.org/10.1016/j.soildyn.2020.106438 SN - 0267-7261 VL - 140 SP - 106438 PB - Elsevier Ltd. CY - London AN - OPUS4-52006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wellenausbreitung in geschichteten Böden – Rechenmethoden und Messbeispiele von Zug- und Gebäudeerschütterungen N2 - Im ersten Teil werden Methoden der Wellenanalyse vorgestellt, Seismogramme, Multistation Analysis of Surface Waves (MASW), f,v-Analyse (Dispersion aus zweifacher Fourier-Analyse), Spatial AutoCorrelation (SPAC, hier auch für deterministische Quellen), und auf Messungen in Deutschland, Österreich und der Schweiz angewendet. Mit den Wellengeschwindigkeiten des Bodens werden die Berechnungsgrundlagen für die Erschütterungsausbreitung im Boden und die Bauwerk-Boden-Wechselwirkung geschaffen. Der zweite Teil beschäftigt sich mit der Wellensynthese, das heißt mit der Berechnung von Wellenfeldern (aus Wellenzahlintegralen). Die Rechnungen können wesentlich vereinfacht werden, wenn man die Dimensionsanalyse und Symmetrieüberlegungen ausnutzt, so dass maximal fünf dimensionslose Verschiebungsfunktionen verbleiben (im Vollraum sind es sogar nur zwei Verschiebungsfunktionen, die sich einfach explizit angeben lassen). Es gibt Ähnlichkeiten zwischen den Halbraum-Amplituden an der Oberfläche, den Halbraum-Amplituden in der Tiefe und der Wellenausbreitung im Vollraum. Die berechneten Wellenfelder (als Terzspektren in verschie-denen Entfernungen von der Erschütterungsquelle) werden verwendet, um die gemessene Übertragungsfunktionen des Bodens zu approximieren und Erschütterungen von Zugvorbeifahrten zu prognostizieren. Auch dies wird an einigen Messorten vorgeführt. Dabei werden einige gemessene Besonderheiten der Eisenbahnerschütterungen mit dem geschichteten Aufbau des Bodens erklärt. Der dritte Teil beschäftigt sich mit der Anwendung der Wellenfelder beziehungsweise der Punkt-lastlösungen beziehungsweise der Greenschen Funktionen in der Randelementmethode. Es wird ein einfaches Prinzip der Herleitung der Randelementmethode vorgeführt. Bei einer beliebigen Berandung benötigt man neben den Verschiebungswellenfeldern auch die Spannungswellen-felder. Eine einfache Berechnung der Spannungswellenfelder wird vorgeführt, die im Vollraum auf drei Spannungsfunktionen, ähnlich einfach wie die Verschiebungsfunktionen, führt. Durch die Kopplung der Randelementmethode mit der Finite-Element-Methode können dann Probleme der Bauwerk-Boden-Wechselwirkung gelöst werden. Der vierte Teil beschäftigt sich schließlich mit der Freifeld-Wellenanregung unter einem Gebäude und der Wellenanregung im Gebäude. Dabei geht es um die Wechselwirkung der Freifeldwellen mit starren oder flexiblen Fundamenten (Pfählen, Fundamentplatten) und den Übertragungs-faktoren zwischen dem Freifeld und dem Gebäude. Bei der Wellenanregung in einem Büro-gebäude in Wien konnten die gleichen Methoden wie bei der Wellenanregung im Boden eingesetzt werden, Seismogramme, MASW, Übertragungsfunktionen und Amplituden-Abstandsgesetze. T2 - Festkolloquium Baudynamik CY - Graz, Austria DA - 05.10.2018 KW - Dispersionsmessung KW - Wellenfeldberechnung KW - Erschütterungsprognose KW - Randelementmethode KW - Bauwerk-Boden-Wechselwirkung KW - Deckenschwingungen PY - 2018 AN - OPUS4-46403 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Comparative measurements and calculations of ground vibrations near slab and ballast tracks N2 - Measurements of ground and track vibrations have been performed at a high-speed line in northern Germany. Impacts on the track and the ground, and passages of different trains with different speeds on different tracks have been measured. Transfer functions of the soil are presented and approximated by theoretical soil models. By using these transfer functions, the measured ground vibration between 2 to 64 m distance from the track can be transformed into a load spectrum which can be used for predictions at other sites. The method is compared to the soil-dependent method of an emission spectrum at a certain distance (8 m for example). The influence of train type, speed and track type is discussed on the base of the different emission quantities and the original measurements. The strong influence of the track, ballast track and slab track, is analysed by a theoretical model in wavenumber domain. The response of the track to the passage of the static load is reduced by the stiffness of the slab, the deformation of the track as well as the impulse acting on the soil. Usually, the impulse on the soil should result in a slow quasi-static movement of the soil, slower at further distances. In a heterogeneous soil, however, the impulses from the static loads scatter and keep parts of the higher impulse frequency band. In this case the reduced impulse spectra of the slab track will yield reduced ground vibration in a certain frequency band. Additional (BAM and international) measurements will be used to discuss this and possible other explanations for the different ground vibration differences. T2 - Railways 2018 CY - Sitges, Spain DA - 03.09.2018 KW - Ground vibration measurements KW - Train passages KW - Tran speed KW - Train configuration KW - Ballast track KW - Slab track PY - 2018 AN - OPUS4-46401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Compliance and damping of piles for wind tower foundation in nonhomogeneous soils by the finite-element boundary-element method N2 - A combined finite-element boundary-element method for the dynamic interaction of the soil with flexible structures such as single piles or complete wind energy towers has been developed. Flexible piles in different soils are analysed in frequency domain. The different parameters such as the stiffness of the soil, the bending stiffness and the radius of the hollow pile are analysed for their influence on the complex compliances. The results have been determined as specific power laws which are different for the different load cases (horizontal, rocking, coupling) and for the different soil models (Winkler, continuum with constant, root-parabolic and proportional-linear stiffness variation). The strongest influence of the soil stiffness can be found for the homogeneous soil and the horizontal component. Winkler soils have a weaker influence than the corresponding continuous soils. An offshore wind energy tower has been modeled and calculated for wind and wave loads. KW - Pile foundation KW - Finite-element boundary-element method KW - Pile bending stiffness KW - Soil stiffness KW - Continuously inhomogeneous soils KW - Layered soils KW - Wind energy tower PY - 2019 U6 - https://doi.org/10.1016/j.soildyn.2018.12.005 SN - 0267-7261 VL - 120 IS - 5 SP - 228 EP - 244 PB - Elsevier CY - London AN - OPUS4-47891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Vehicle-track-soil interaction and train-induced ground vibration – Theory and measurements in Germany, Switzerland and France N2 - Three measurement campaigns of train-induced ground vibrations are evaluated for the vehicle-track-soil interaction. Ground vibrations, track vibrations and vehicle vibrations have been measured for train passages and impulse excitation and compared with theoretical results. The soil and the track-soil system are calculated by wavenumber integrals. The influence of the vehicle is introduced by a substructure method. By comparing theory and measurement the different components of excitation force and ground vibration can be analysed, the quasi-static excitation, track-alignment errors, the out-of-roundness of wheels, the wheel and rail roughness, and moreover, scattered axle impulses and ineffective high-frequency parts of the wheelset accelerations and forces. T2 - Recent Advance in Structural Dynamics CY - Lyon, France DA - 15.04.2019 KW - Vehicle-track-soil interaction KW - Train-induced ground vibration KW - Vibration measurements PY - 2019 SP - 810 EP - 821 PB - University of Southampton CY - Southampton AN - OPUS4-47892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Vehicle-track-soil interaction and train-induced ground vibration: Theory and measurements in Germany, Switzerland and France N2 - Three measurement campaigns of train-induced ground vibrations are evaluated for the vehicle-track-soil interaction. Ground vibrations, track vibrations and vehicle vibrations have been measured for train passages and impulse excitation and compared with theoretical results. The soil and the track-soil system are calculated by wavenumber integrals. The influence of the vehicle is introduced by a substructure method. By comparing theory and measurement the different components of excitation force and ground vibration can be analysed, the quasi-static excitation, track-alignment errors, the out-of-roundness of wheels, the wheel and rail roughness, and moreover, scattered axle impulses and ineffective high-frequency parts of the wheelset accelerations and Forces. T2 - Recent Advance in Structural Dynamics CY - Lyon, France DA - 15.04.2019 KW - Vehicle-track-soil interaction KW - Train-induced ground vibration PY - 2019 AN - OPUS4-47893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Roughness and wheelset acceleration from axle-box measurements for understanding the generation and mitigation of ground vibrations N2 - Two measurement campaigns of train-induced ground vibrations are evaluated for the vehicle-track-soil interaction. Ground vibrations, track vibrations and vehicle vibrations have been measured for train passages and impulse excitation and compared with theoretical results. The soil and the track-soil system are calculated by wavenumber integrals. The influence of the vehicle is introduced by a substructure method. By comparing theory and measurement the different components of excitation force and ground vibration can be analysed, the quasi-static excitation, track-alignment errors, the out-of-roundness of wheels, the wheel and rail roughness, and moreover, scattered axle impulses and ineffective high-frequency parts of the wheelset accelerations and forces. T2 - ISO/TC 108/SC 2/WG 8 Working group Ground-borne noise and vibration from rail systems CY - Berlin, Germany DA - 12.03.2019 KW - Vehicle-track-soil interaction KW - Train-induced ground vibration PY - 2019 AN - OPUS4-47894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prognoseverfahren für Bahnerschütterungen – DIN 45672-3, VDI 3837, HighSpeed2 und die Fahrzeug-Fahrweg-Boden Wechselwirkung N2 - Die VDI Richtlinie 3837 enthält detaillierte Angaben zur Erschütterungsemission. Die DIN 45672-3 enthält nur den Tunnel- oder einen Bodenmesspunkt als Ausgangspunkt der Prognose. Die Erschütterungsanregung durch die Fahrzeug-Fahrweg-Wechselwirkung wird beschrieben. Die ERgebnisse der BAM stimmen sehr gut mit dem Prognosekonzept von Highspeed 2 überein. Dies wird an den Punkten 1. Störgrößen, 2. Achsimpulse, 3. Tunnelstrecken aufgezeigt. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Frankfurt/M., Germany DA - 08.02.2023 KW - Normung KW - Bahnerschütterungen KW - Emission KW - Fahrzeug-Fahrweg-Boden-Wechselwirkung KW - Störgrößen KW - Achsimpulse KW - Tunnelstrecke PY - 2023 AN - OPUS4-56978 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Vehicle Dynamics and Train‑Induced Ground Vibration—Theoretical Analyses and Simultaneous Vehicle, Track, and Soil Measurements N2 - Ground vibrations near railway lines are generated by the forces that are acting between wheel and rail. It seems to be a straight forward assumption that the vehicle dynamics are important for the level and the frequencies of the excitation forces. Different vehicle dynamics phenomena are analysed for their role in the excitation of ground vibrations: rigid body modes of the bogies, elastic (bending) modes of the car body, and elastic modes of the wheelset. The theoretical analyses use rigid body models, simplified elastic models, and detailed elastic models. Some of these problems are vehicle–track interaction problems where 3D finite‑element boundary‑element models have been used for the track and soil. It is shown that the rigid or flexible vehicle modes are well in the frequency range of ground vibrations (4 to 100 Hz). They have an influence on the excitation force but the additional forces are rather small and can be neglected in ground vibration prediction. The theoretical results are checked by experimental results of a simultaneous measurement of vehicle, track, and ground vibrations. KW - Rigid vehicle model KW - Flexible car body KW - Flexible wheelset KW - Dynamic loads KW - Ground vibration PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569796 VL - 5 IS - 1 SP - 223 EP - 247 PB - MDPI CY - Basel AN - OPUS4-56979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Challenges of vibration prediction – realistic irregularities, the scattering of axle pulses, and the tunnel-surface reduction N2 - A prediction software has been developed by BAM. The following topics have still be solved. A realistic irregularity spectrum can be derived from axle-box measurements. It agrees wel with the spectrum used for the high-speed 2 project in the United Kingdom. In addition, the scattering of axle pulses should be included. This mid-frequency component can also be found in the HS2 procedure. Finally, the reduction in case of a tunnel line compared to a surface line should be included. Some measurement results of BAM, HS2 and other institutes show a certain mid-frequency reduction. This is due to the load distribution of the tunnel which yields softer axle pulses and the scattered axle impulses are reduced. T2 - ISO/TC 108/SC 2/WG 8 Working group Ground-borne noise and vibration from rail systems CY - London, UK DA - 21.11.2022 KW - Ground vibration KW - Railway trafiic KW - Prediction KW - Irregularities KW - Axle pulses KW - Tunnel line KW - Surface line PY - 2022 AN - OPUS4-56738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - Damage detection by flexibility functions and quasi-static moving load tests N2 - The contribution shows measurement examples of cars, floors, foundations, railway tracks, a footbridge, and a railbridge. Vibrations may include modes and waves. Namely in soil-structure interaction, modes are damped, shifted and prevented so that alternatives for the modal analysis are necessary: The approximation of the whole spectrum (flexibility function) and of the whole train passage (moving-load response). T2 - Symposium Emerging Trends in Bridge Damage Detection, Localization and Quantification CY - Luxembourg, Luxembourg DA - 05.05.2023 KW - Flexibility KW - Movin load test KW - Frequency response function KW - Cars KW - Floors KW - Foundations KW - Railway tracks KW - Footbridge KW - Railbridge KW - Damage detection PY - 2023 AN - OPUS4-57951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Frequenz- und bodenabhängige Prognose und Minderung von Bahnerschütterungen N2 - Die Prognose und Minderung von Bahnerschütterungen haben eine lange Tradition in der Bundesanstalt für Materialforschung und -prüfung. Im Jahr 2006 wurde eine Prognose-Software fertiggestellt, die viele Forschungs- und Messergebnisse zusammenfasst. Sie umfasst die Teilbereiche Emission (die Anregung durch die Fahrzeug-Fahrweg-Untergrund-Wechselwirkung), die Transmission (die Ausbreitung durch den Boden) und die Immission (die Übertragung vom Freifeld in ein Gebäude). Die Prognose geschieht in allen Teilen mit einfachen Formeln, die veröffentlicht sind und zur Anwendung für Jedermann zur Verfügung stehen. Es werden Beispiele zur Emission und zur Transmission gezeigt. Im Bereich Transmissionsprognose werden zu den Anregungskräften (aus dem Emissionsteil) die Bodenerschütterungen als Schwinggeschwindigkeitsterzspektren berechnet. Das Ergebnis hängt stark von der Bodensteifigkeit, -dämpfung und -schichtung ab. Dies wurde später mit einer Messkampagne in der Schweiz an 10 Messorten bestätigt (Bild 1). Die Berechnung erfolgt näherungsweise für einen geschichteten Boden mit einer frequenzabhängigen Wellengeschwindigkeit (Dispersion) oder einem tiefenabhängigen Wellengeschwindigkeitsprofil. Die Anregungskräfte werden im Prognosebereich Emission mit einem 2-dimensionalen Gleismodell berechnet (Bild 2). 1-dimensionale Modelle liefern meist falsche Ergebnisse und 3-dimensionale Modelle (zum Beispiel mit der kombinierten Finite-Element-Randelement-Methode) sind für eine Erschütterungs¬prognose sicherlich zu aufwändig. Das 2-dimensionale Modell wurde an 3-dimensionale Ergebnisse so angepasst, dass die Ergebnisse für viele Gleise und Böden annähernd zutreffen. Auch Minderungs¬maßnahmen am Gleis können mit diesem Modell sehr gut berechnet werden. Die Prognoseverfahren wurden in den folgenden Jahren weiter verfeinert. Es wurde die quasi-statische Anregung durch die bewegten statischen Zuglasten mit einer Näherungsformel ergänzt, so dass auch das tieffrequente Nahfeld realistisch erfasst werden kann. Mit der Berücksichtigung der Achsfolge (insbesondere zwischen den Achsen im Drehgestell) ergeben sich zwei typische Minima in den Erschütterungsspektren, die oft auch in den Messungen beobachtet werden. Der Amplitudenanteil zwischen diesen beiden Minima ist oft stärker angehoben, so dass hier eine zusätzliche Erschütterungsanregung vermutet wird. Dieser Anteil kann rein empirisch prognostiziert werden, so wie das in den englischen Prognosen (zuletzt für das Highspeed2-Projekt) enthalten ist. Die Begründung dieses Anteils ist allerdings nicht die Achsfolge, sondern die Zerstreuung der statischen Achslastimpulse durch einen unregelmäßigen Gleisuntergrund und Boden. Die messtechnische Ermittlung eines Minderungseffektes ist komplizierter als allgemein angenommen. Es reicht nicht aus, jeweils an einem Messpunkt in der Nähe eines Gleises mit und ohne Minderungs¬maßnahme die Erschütterungen zu messen und aus dem Verhältnis der Amplituden (beziehungsweise aus der Differenz der Pegel) „die Einfügedämmung“ zu ermitteln. Es wird an Beispielen gezeigt, wie man hier sinnvoller vorgehen kann. 1. Zunächst ist es wichtig, nicht nur die Einfügedämmung sondern auch die Originalspektren mit und ohne Minderung zu dokumentieren und zu veröffentlichen, damit man kontrollieren kann, ob wesentliche Amplituden und Frequenzbereiche reduziert sind oder ob es sich um eher zufällige Minderungen oder Verstärkungen handelt. (Beispiel Unterschottermatte/Raron, Müller/SBB) 2. Der Messpunkt sollte nicht im Nahbereich des Gleises liegen, da ansonsten eine zu günstige, falsche Einfügedämmung bestimmt wird. (Beispiel Tunnel/ Leipzig/Breitsamter) 3. Um Zufälligkeiten zu vermeiden, sollte man an mehr als einem Punkt messen. (Beispiel Unterschotterplatte/Altheim/Auersch) 4. Man sollte eigentlich immer auch die Bodenkennwerte (Steifigkeit, Dämpfung, Amplituden-abnahme, Übertagungsfunktion) messen. Selbst bei nahegelegene Messquerschnitten kann man Überraschungen erleben. (Beispiel erste ICE-Messungen/bei Würzburg/Auersch) 5. Bei verschiedenen Bodenkennwerten kann man eine Korrektur durchführen. (Beispiel Gleis-tröge/Mistler) Am besten bestimmt man ein äquivalentes Kraftspektrum zu jedem Messort und jedem Messzug (Beispiel Feste Fahrbahn/Gardelegen/Auersch) 6. Prinzipiell gibt es nicht die Einfügedämmung einer Maßnahme. Die Einfügedämmung ist immer boden- und referenzsystemabhängig. Die „beste“ Einfügungsdämmung erhält man mit einem steifen Untergrund (Beispiel Unterschottermatte/Tunnel/München Gasteig/Wettschureck) Das heißt aber nicht, dass die Maßnahme durch einen künstlich versteiften Untergrund besser wird (Beispiel Unterschottermatten/RRT2006/Auersch) Es werden Messbeispiele gezeigt, die alle neben einer hochfrequenten dynamischen Minderung auch eine mittelfrequente quasi-statische Minderung aufweisen. Dabei wird der mittelfrequente Zerstreuanteil der statischen Achslastimpulse durch die breitere Lastverteilung und damit die Impulsdehnung der Achslastimpulse reduziert. Diese Impulsdehnung lässt sich mit dem 2-dimensionalen Gleismodell berechnen. Die Minderungswirkung hängt aber wiederum vom Referenzsystem und dessen unregel¬mäßiger Steifigkeitsverteilung ab. Je unregelmäßiger der Boden und Gleisuntergrund des Referenz¬systems, desto stärker ist die Minderungswirkung. T2 - 24. Symposium für Baudynamik und Erschütterungsmessungen CY - Dübendorf, Switzerland DA - 09.06.2023 KW - Bahnerschütterungen KW - Erschütterungsprognose KW - Erschütterungsminderung KW - Elastische Gleiselemente KW - Gleiströge KW - zerstreute Achslastimpulse PY - 2023 AN - OPUS4-57952 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Frequenz- und bodenabhängige Prognose und Minderung von Bahnerschütterungen N2 - Die Prognose und Minderung von Bahnerschütterungen haben eine lange Tradition in der Bundesanstalt für Materialforschung und -prüfung. Im Jahr 2006 wurde eine Prognose-Software fertiggestellt, die viele Forschungs- und Messergebnisse zusammenfasst. Sie umfasst die Teilbereiche Emission (die Anregung durch die Fahrzeug-Fahrweg-Untergrund-Wechselwirkung), die Transmission (die Ausbreitung durch den Boden) und die Immission (die Übertragung vom Freifeld in ein Gebäude). Die Prognose geschieht in allen Teilen mit einfachen Formeln, die veröffentlicht sind und zur Anwendung für Jedermann zur Verfügung stehen. Es werden Beispiele zur Emission und zur Transmission gezeigt. Im Bereich Transmissionsprognose werden zu den Anregungskräften (aus dem Emissionsteil) die Bodenerschütterungen als Schwinggeschwindigkeitsterzspektren berechnet. Das Ergebnis hängt stark von der Bodensteifigkeit, -dämpfung und -schichtung ab. Dies wurde später mit einer Messkampagne in der Schweiz an 10 Messorten bestätigt. Die Berechnung erfolgt näherungsweise für einen geschichteten Boden mit einer frequenzabhängigen Wellengeschwindigkeit (Dispersion) oder einem tiefenabhängigen Wellengeschwindigkeitsprofil. Die Anregungskräfte werden im Prognosebereich Emission mit einem 2-dimensionalen Gleismodell berechnet. 1-dimensionale Modelle liefern meist falsche Ergebnisse und 3-dimensionale Modelle (zum Beispiel mit der kombinierten Finite-Element-Randelement-Methode) sind für eine Erschütterungs¬prognose sicherlich zu aufwändig. Das 2-dimensionale Modell wurde an 3-dimensionale Ergebnisse so angepasst, dass die Ergebnisse für viele Gleise und Böden annähernd zutreffen. Auch Minderungs¬maßnahmen am Gleis können mit diesem Modell sehr gut berechnet werden. Die Prognoseverfahren wurden in den folgenden Jahren weiter verfeinert. Es wurde die quasi-statische Anregung durch die bewegten statischen Zuglasten mit einer Näherungsformel ergänzt, so dass auch das tieffrequente Nahfeld realistisch erfasst werden kann. Mit der Berücksichtigung der Achsfolge (insbesondere zwischen den Achsen im Drehgestell) ergeben sich zwei typische Minima in den Erschütterungsspektren, die oft auch in den Messungen beobachtet werden. Der Amplitudenanteil zwischen diesen beiden Minima ist oft stärker angehoben, so dass hier eine zusätzliche Erschütterungsanregung vermutet wird. Dieser Anteil kann rein empirisch prognostiziert werden, so wie das in den englischen Prognosen (zuletzt für das Highspeed2-Projekt) enthalten ist. Die Begründung dieses Anteils ist allerdings nicht die Achsfolge, sondern die Zerstreuung der statischen Achslastimpulse durch einen unregelmäßigen Gleisuntergrund und Boden. Die messtechnische Ermittlung eines Minderungseffektes ist komplizierter als allgemein angenommen. Es reicht nicht aus, jeweils an einem Messpunkt in der Nähe eines Gleises mit und ohne Minderungsmaßnahme die Erschütterungen zu messen und aus dem Verhältnis der Amplituden (beziehungsweise aus der Differenz der Pegel) „die Einfügedämmung“ zu ermitteln. Es wird an Beispielen gezeigt, wie man hier sinnvoller vorgehen kann. 1. Zunächst ist es wichtig, nicht nur die Einfügedämmung sondern auch die Originalspektren mit und ohne Minderung zu dokumentieren und zu veröffentlichen, damit man kontrollieren kann, ob wesentliche Amplituden und Frequenzbereiche reduziert sind oder ob es sich um eher zufällige Minderungen oder Verstärkungen handelt. (Beispiel Unterschottermatte/Raron, Müller/SBB) 2. Der Messpunkt sollte nicht im Nahbereich des Gleises liegen, da ansonsten eine zu günstige, falsche Einfügedämmung bestimmt wird. (Beispiel Tunnel/ Leipzig/Breitsamter) 3. Um Zufälligkeiten zu vermeiden, sollte man an mehr als einem Punkt messen. (Beispiel Unterschotterplatte/Altheim/Auersch) 4. Man sollte eigentlich immer auch die Bodenkennwerte (Steifigkeit, Dämpfung, Amplituden-abnahme, Übertagungsfunktion) messen. Selbst bei nahegelegene Messquerschnitten kann man Überraschungen erleben. (Beispiel erste ICE-Messungen/bei Würzburg/Auersch) 5. Bei verschiedenen Bodenkennwerten kann man eine Korrektur durchführen. (Beispiel Gleis-tröge/Mistler) Am besten bestimmt man ein äquivalentes Kraftspektrum zu jedem Messort und jedem Messzug (Beispiel Feste Fahrbahn/Gardelegen/Auersch) 6. Prinzipiell gibt es nicht die Einfügedämmung einer Maßnahme. Die Einfügedämmung ist immer boden- und referenzsystemabhängig. Die „beste“ Einfügungsdämmung erhält man mit einem steifen Untergrund (Beispiel Unterschottermatte/Tunnel/München Gasteig/Wettschureck) Das heißt aber nicht, dass die Maßnahme durch einen künstlich versteiften Untergrund besser wird (Beispiel Unterschottermatten/RRT2006/Auersch) Es werden Messbeispiele gezeigt, die alle neben einer hochfrequenten dynamischen Minderung auch eine mittelfrequente quasi-statische Minderung aufweisen. Dabei wird der mittelfrequente Zerstreuanteil der statischen Achslastimpulse durch die breitere Lastverteilung und damit die Impulsdehnung der Achslastimpulse reduziert. Diese Impulsdehnung lässt sich mit dem 2-dimensionalen Gleismodell berechnen. Die Minderungswirkung hängt aber wiederum vom Referenzsystem und dessen unregelmäßiger Steifigkeitsverteilung ab. Je unregelmäßiger der Boden und Gleisuntergrund des Referenzsystems, desto stärker ist die Minderungswirkung. T2 - 24. Symposium für Baudynamik und Erschütterungsmessungen CY - Dübendorf, Sitzerland DA - 09.06.2023 KW - Bahnerschütterungen KW - Erschütterungsprognose KW - Erschütterungsminderung KW - Elastische Gleiselemente KW - Gleiströge KW - Zerstreute Achsimpulse PY - 2023 SP - 1 EP - 32 PB - Ziegler Consultants CY - Zürich AN - OPUS4-57953 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The dynamic train-track interaction on a bridge and in a tunnel compared with the simultaneous vehicle, track, and ground vibration measurements at a surface line N2 - The vehicle–track interaction generates forces and consequently vibrations in the environment. The interaction has been analysed by the simultaneous measurements of vehicle, track and ground vibrations during test runs with varied train speeds. The special effects of the passage over a bridge and through a tunnel are studied and compared with the measurements on a conventional ballasted surface line. The maximum amplitudes, narrow band and one-third octave band spectra are presented for the axle-box accelerations and for the track, bridge and ground vibrations. The different frequencies and frequency bands are related to wheel out-of-roundness, track alignment errors, the sleeper passage and the wheelset–track resonance. An axle impulse component has been observed at the track, at the near-field soil and as a scattered version in the far field. Specific results can be found for the bridge track, where clearly speed-dependent bridge resonances occur due to the axle sequence of the train, and for the tunnel track where soft rail pads are responsible for a strong amplification around the wheelset–track resonance. On the other hand, the axle impulses are strongly reduced by the tunnel track, and the scattered axle impulse component is not as relevant as for the surface track. As a consequence, a strong mid-frequency amplitude reduction of the tunnel compared to the surface line has been measured for low and high train speeds by the Federal Institute of Material Research and Testing (BAM) and by other institutes. KW - Vehicle–track interaction KW - Ground vibration KW - Tunnel-to-surface reduction KW - Bridge resonance KW - Axle sequence PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-585139 VL - 13 IS - 19 SP - 1 EP - 23 PB - MDPI CY - Basel, Schweiz AN - OPUS4-58513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Site-specific amplitude-distance laws, wave velocities, damping, and transfer functions of the soil from hammer impacts and application to railway-induced ground vibration – Similarities and mid-frequency differences N2 - The propagation of ground vibrations is theoretically analysed with frequency-wavenumber and simplified methods. Experimental methods are presented which can characterise the site-specific ground vibrations by wave velocities, stiffness and damping. Measurements with hammer and train excitation have been performed at several sites. The one-third octave spectra show the stiffness-dependent amplitudes and the low- and high-frequency filter effects due to the layering and the damping of the soil. Specific train effects, an additional high-frequency filter, the sleeper passage frequency, and an amplified mid-frequency component can be clearly found. The attenuation with distance is analysed in detail where the theoretical exponential and the empirical frequency-dependent power law are considered. Hammer and train excitation show the same site-specific effects which are mainly due to the stronger or weaker damping of the soil. The train attenuation is generally weaker than the hammer attenuation. The attenuation exponent of the power law, which is strongly dependent on the site and the frequency, is reduced for the train vibration by 0.3 to 0.5 in agreement with the theory. Reasons are discussed for the overall power law and for the dominating mid-frequency component. KW - Hammer impact KW - Train passage KW - Layered soil KW - Attenuation KW - Filter effects KW - Randomly heterogeneous soil KW - Scattering PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-585020 SN - 2366-2557 SP - 1 EP - 17 PB - Springer AN - OPUS4-58502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Impacts Between Different Drop Masses and Different Targets in Different Scales N2 - The Federal Institute of Material Research and Testing has performed many impact tests from very small laboratory tests to very big “free-field” tests with heavy containers on stiff foundations. The first measurements have been done on a big foundation where it should be guaranteed that the foundation is rigid and the container is tested properly. Later on, a smaller drop test facility has been built on the ground inside an existing building. It had to be controlled by prediction and measurements that the drop test will not damage the building. Tests from different heights on soft, medium, and stiff targets have been done to find out rules which allow to identify acceptable and unacceptable drop tests. Later on, the biggest drop test facility has been built for masses up to 200 t. It was necessary for the design of the foundation to estimate the forces which oc-cur during the drop tests. In addititon, the acceptable tests should be selected and controlled by measurements where the impact duration is important. Dif-ferent sensors, accelerometers, accelerometers with mechanical filters, geo-phones (velocity transducers), strain gauges, and pressure cells have been ap-plied for these tasks. Signal transformations and model calculations have been used to check and understand the dynamic measurements. The simplest law is the conservation of the momentum which is a good approximation if the impact is short. If the soil under the foundation has an influence on the deceleration of the container, the maximum foundation velocity is lower than the simple esti-mation. T2 - Experimental Vibration Analysis for Civil Engineering Structures (EVACES 2023) CY - Milano, Italy DA - 30.08.2023 KW - Drop test KW - Vibration measurements KW - Container loading KW - Foundation load PY - 2023 SN - 978-3-031-39116-3 U6 - https://doi.org/10.1007/978-3-031-39117-0_60 SN - 2366-2557 SP - 592 EP - 602 PB - Springer Nature Switzerland CY - Cham, Schweiz AN - OPUS4-58503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Impacts between different drop masses and different targets in different scales N2 - The Federal Institute of Material Research and Testing has performed many impact tests from very small laboratory tests to very big “free-field” tests with heavy containers on stiff foundations. The first measurements have been done on a big foundation where it should be guaranteed that the foundation is rigid and the container is tested properly. Later on, a smaller drop test facility has been built on the ground inside an existing building. It had to be controlled by prediction and measurements that the drop test will not damage the building. Tests from different heights on soft, medium, and stiff targets have been done to find out rules which allow to identify acceptable and unacceptable drop tests. Later on, the biggest drop test facility has been built for masses up to 200 t. It was necessary for the design of the foundation to estimate the forces which oc-cur during the drop tests. In addititon, the acceptable tests should be selected and controlled by measurements where the impact duration is important. Dif-ferent sensors, accelerometers, accelerometers with mechanical filters, geo-phones (velocity transducers), strain gauges, and pressure cells have been ap-plied for these tasks. Signal transformations and model calculations have been used to check and understand the dynamic measurements. The simplest law is the conservation of the momentum which is a good approximation if the impact is short. If the soil under the foundation has an influence on the deceleration of the container, the maximum foundation velocity is lower than the simple esti-mation. T2 - 10th International Conference on Experimental Vibration Analysis for Civil Engineering Structures CY - Milano, Italy DA - 30.08.2023 KW - Drop test KW - Vibration measurements KW - Container loading KW - Foundation load PY - 2023 AN - OPUS4-58504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Soil-foundation-structure problems related to train induced vibrations - the kinematic interaction of tunnel excited pile foundations and the inertial interaction of high rise buildings N2 - The soil-foundation-structure interaction is always important when building vibrations due to train passages have to be considered. The frequency range for train vibrations is up to 100 Hz. Normally, soft surface soils are crucial so that the wavelength can be much smaller than the foundation dimensions. Three topics are of interest for the prediction and the under-standing of building vibrations. 1. The „kinematic interaction“ or the „added foundation ef-fect“, which is calculated either by the combined boundary-element finite-element method or by the wavenumber domain method, results in a reduction of the free-field vibration. The stiff-ness of the foundation resists the wave deformation, plates and walls for horizontally propa-gating waves or piles for vertically incident waves. 2. The „inertial interaction“ or the „added building effect“ yields an amplification around the vertical building resonance, which may be a rigid mode on the compliant soil or a flexible mode for high-rise buildings, and a reduction at higher frequencies. This has been analysed by detailed finite element models of apartment and office buildings. 3. Base isolation is a method to further reduce building vibrations. It is important to know the soil-foundation impedance for the possible reduction, as well as the correct building impedance. A high-rise building cannot be considered as a rigid mass model. It has a frequency-dependent behaviour with longitudinal waves travelling from the founda-tion to the top of the building which include the effect of floor vibrations. Experiences from building projects in Vienna, Frankfort and Berlin will give some additional results for the ex-citation from tunnel lines, the kinematic response of pile foundations, and the inertial re-sponse of the flexible multi-storey buildings. T2 - Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2023) CY - Athens, Greece DA - 12.06.2023 KW - Soil-pile interaction KW - Pile groups KW - Kinematic interaction KW - Inertial interaction KW - High-rise buildings KW - Base isolation PY - 2023 AN - OPUS4-57954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long 1-span bridge on elastomeric bearings under standard train speeds, and to a long multi-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4 and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. T2 - EURODYN 2023 XII International Conference on Structural Dynamics CY - Delft, Netherlands DA - 03.07.2023 KW - Railway bridge KW - Transfer fuction KW - Modal load spectrum KW - Axle-sequence spectrum KW - Freight train KW - Passenger train KW - High-speed train KW - 2-span bridge PY - 2023 AN - OPUS4-57955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Train-induced ground vibrations – The emission and transmission from tunnel and surface lines N2 - Train-induced ground vibrations are quite different for tunnel and surface lines. The excitation of the track and ground vibration by the vehicle-track-soil interaction maybe influenced by the stiffer track support of the tunnel invert. The excited waves are propagating on a different path compared to the surface line. The wave propagation in the interior of the soil is calculated by a wavenumber integral in a similar way as the propagation along the surface and a general reduction of < 0.5 has been found. An additional reduction has been found because of the missing Rayleigh wave. The different excitation of tunnel lines is analysed theoretically by the combined finite-element boundary-element method and some results about the influencing tunnel and soil parameters will be shown. Measurements have been made at the Mühlberg-Tunnel in Germany. The vibrations of the train, the track and the soil have been measured simultaneously at the tunnel and a nearby surface line. Spectra will be shown for different train speeds between 60 and 160 km/h. A clear reduction effect for the tunnel line compared to the surface line has been observed in a specific (train-speed-dependent) frequency range. This agrees well with the observations of other research institutes. The mid-frequency tunnel-surface reduction seems to be a consequence of the stiffer track structure which leads to a wider distribution of the axle loads. Therefore, the axle impulses due to the train passage are longer and have a lower frequency content. This will have an effect on the ground vibrations at some distance which are present in case of an irregular transmission path through a ballast and soil with varying stiffness. A similar reduction effect can also be found for other track forms where the axle impulses are distributed on a longer track segment, for example slab tracks, tracks with under ballast plates, under ballast mats or under sleeper pads. T2 - 29th International Congress on Sound and Vibration (ICSV29) CY - Prague, Czech Republic DA - 09.07.2023 KW - Ground vibration KW - Railway tunnel KW - Layered soil KW - Surface-tunnel reduction KW - Measurements PY - 2023 AN - OPUS4-57956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Reduction in Train-Induced Vibrations—Calculations of Different Railway Lines and Mitigation Measures in the Transmission Path N2 - The reduction in train-induced ground vibrations by different railway lines and by mitigation measures in the propagation path was analysed in a unified approach by two-dimensional finite element calculations. In general, there was no reduction at low frequencies, and the reduction be-came stronger with increasing frequencies. A maximum reduction of 0.1 at high frequencies was established with an open trench. Reductions between 0.7 and 0.2 have been found for the other sit-uations, filled trenches, walls, plates, and blocks, as well as for railway lines on dams, in cuts and in a tunnel. Bridges can produce amplifications due to their resonance frequencies, but also strong reductions due to massive bridge piers. The influence of some parameters has been analysed, such as the bridge span, the inclination of the dam and the cut, the stiffness of the soil, and the tunnel structure. The dynamic track stiffnesses of a surface, bridge, and tunnel track have been calculated using the 3D finite-element boundary-element method for comparison with corresponding meas-urements. KW - Train-induced vibration KW - Mitigation KW - Trench KW - Obstacles KW - Tunnel KW - Bridge KW - Finite element KW - Boundary element PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-579573 VL - 13 IS - 11 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-57957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Soil-foundation-structure problems related to train induced vibrations - the kinematic interaction of tunnel excited pile foundations and the inertial interaction of high rise buildings N2 - The soil-foundation-structure interaction is always important when building vibrations due to train passages have to be considered. The frequency range for train vibrations is up to 100 Hz. Normally, soft surface soils are crucial so that the wavelength can be much smaller than the foundation dimensions. Three topics are of interest for the prediction and the under-standing of building vibrations. 1. The „kinematic interaction“ or the „added foundation ef-fect“, which is calculated either by the combined boundary-element finite-element method or by the wavenumber domain method, results in a reduction of the free-field vibration. The stiff-ness of the foundation resists the wave deformation, plates and walls for horizontally propa-gating waves or piles for vertically incident waves. 2. The „inertial interaction“ or the „added building effect“ yields an amplification around the vertical building resonance, which may be a rigid mode on the compliant soil or a flexible mode for high-rise buildings, and a reduction at higher frequencies. This has been analysed by detailed finite element models of apartment and office buildings. 3. Base isolation is a method to further reduce building vibrations. It is important to know the soil-foundation impedance for the possible reduction, as well as the correct building impedance. A high-rise building cannot be considered as a rigid mass model. It has a frequency-dependent behaviour with longitudinal waves travelling from the founda-tion to the top of the building which include the effect of floor vibrations. Experiences from building projects in Vienna, Frankfort and Berlin will give some additional results for the ex-citation from tunnel lines, the kinematic response of pile foundations, and the inertial re-sponse of the flexible multi-storey buildings. T2 - COMPDYN 2023 CY - Athen, Greece DA - 12.06.2023 KW - Kinematic Interaction KW - Inertial Interaction KW - Surface Foundation KW - Pile Foundation KW - High-Rise Building PY - 2023 SP - 1 EP - 14 PB - NTUA CY - Athens AN - OPUS4-57959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long 1-span bridge on elastomeric bearings under standard train speeds, and to a long multi-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4 and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. T2 - XII International Conference on Structural Dynamics CY - Delft, The Netherlands DA - 03.07.2023 KW - Railway bridge KW - Transfer function KW - Modal force spectrum KW - Axle-sequence spectrum KW - Freight train KW - Passenger train KW - High-speed train KW - 2-span bridge KW - Long-span bridge PY - 2023 SP - 1 EP - 10 PB - TU Delft CY - Delft AN - OPUS4-57961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Train-induced ground vibrations - the emission and transmission from tunnel and surface lines N2 - Train-induced ground vibrations are quite different for tunnel and surface lines. The excitation of the track and ground vibration by the vehicle-track-soil interaction maybe influenced by the stiffer track support of the tunnel invert. The excited waves are propagating on a different path compared to the surface line. The wave propagation in the interior of the soil is calculated by a wavenumber integral in a similar way as the propagation along the surface and a general reduction of < 0.5 has been found. An additional reduction has been found because of the missing Rayleigh wave. The different excitation of tunnel lines is analysed theoretically by the combined finite-element boundary-element method and some results about the influencing tunnel and soil parameters will be shown. Measurements have been made at the Mühlberg-Tunnel in Germany. The vibrations of the train, the track and the soil have been measured simultaneously at the tunnel and a nearby surface line. Spectra will be shown for different train speeds between 60 and 160 km/h. A clear reduction effect for the tunnel line compared to the surface line has been observed in a specific (train-speed-dependent) frequency range. This agrees well with the observations of other research institutes. The mid-frequency tunnel-surface reduction seems to be a consequence of the stiffer track structure which leads to a wider distribution of the axle loads. Therefore, the axle impulses due to the train passage are longer and have a lower frequency content. This will have an effect on the ground vibrations at some distance which are present in case of an irregular transmission path through a ballast and soil with varying stiffness. A similar reduction effect can also be found for other track forms where the axle impulses are distributed on a longer track segment, for example slab tracks, tracks with under ballast plates, under ballast mats or under sleeper pads. T2 - 29th International Congress on Sound and Vibration CY - Prague, Czech Republic DA - 09.07.2023 KW - Ground vibration KW - Railway tunnel KW - Layered soil KW - Surface-tunnel reduction KW - Measurements PY - 2023 SP - 1 EP - 8 PB - IIAV CY - Auburn, USA AN - OPUS4-57962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -