TY - CONF A1 - Auersch, Lutz A1 - Ziemens, Susanne T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Building vibration PY - 2020 AN - OPUS4-51679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Markfort, Greta T1 - Static and dynamic behaviour of pile foundations in homogeneous and inhomogeneous soils N2 - Offshore wind energy towers are dynamically loaded by waves and wind. Pile foundations provide stiffness and damping and should be properly calculated. A combined finite-element boundary-element method for the dynamic interaction of flexible structures and the soil has been developed. The flexible structures such as single piles or complete wind energy towers are modeled by the finite element method whereas the homogeneous or layered soil is modeled by the boundary element method which uses the Green’s functions for interior loads in the layered half-space to establish the dynamic stiffness matrix of the soil. Soils with a stiffness that is continuously increasing with depth can be modeled as multi-layer soils with step-wise increasing stiffness. The effects of different parameters such as the stiffness of the soil, the axial and bending stiffness of the pile, and the radius of the cylindrical contact area will be analysed for the different components of excitation (vertical, horizontal, rotation and coupling). The results can be determined as specific power laws which are different for the different load cases and for the different soil models (Winkler support, homogeneous continuum, continuum with increasing stiffness). The dynamic effect of radiation damping will be analysed by the frequency-dependent compliance functions. A clear layering of the soil can cause noticeable changes in the dynamic compliances as reductions of the stiffness and the damping in certain frequency ranges (below and around layer resonance frequencies). The distribution of the displacements along the pile help to explain the observed laws. An example of an offshore wind energy tower has been modeled and calculated for wind, wave and weight loads. The resonances of the tower are usually limited by the radiation damping which is strongest for a soft soil. T2 - Compdyn 2017 CY - Rhodes, Greece DA - 15.06.2017 KW - Pile foundation KW - Finite-element boundary-element method KW - Pile bending stiffness KW - Soil stiffness KW - Continuously inhomogeneous soils KW - Layered soils KW - Wind energy tower PY - 2017 AN - OPUS4-42486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Müller, Roger T1 - Measurements on the vehicle-track interaction and the excitation of railway-induced ground vibration N2 - Two railway measurement campaigns have been performed in Germany and Switzerland which yield insight in the vehicle-track-soil interaction. The campaign in Germany has included simultaneous measurement of vehicle, track, and soil vibrations during train runs with 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h, and impulse measurements of the passenger car, three track sections and the soil. Two ballast tracks, one on the soil surface and one on a concrete bridge, have been investigated as well as a slab track in a tunnel. Ten different sites in Switzerland have been measured for soil properties and train-induced ground vibrations, which allow to determine the excitation forces of the railway traffic. New axle-box measurements at some of the Swiss sites have been analysed to get further experimental evidence. All these measurements have been evaluated to characterize the excitation processes. Relations between vehicle vibration and ground vibration can be observed. The vehicle vibrations, namely the accelerations of the wheelsets, yield the dynamic forces due to the passage over the irregularities of the vehicle and the track. The ground vibrations are correlated to these dynamic forces to a certain extent. Some mid-frequency ground vibration amplitudes, however, are higher than expected from the dynamic excitation forces. The experimental observations can be explained by an irregular response to the passage of the static loads, that means the passage of the static loads over an irregular ballast or soil. This correct understanding of the excitation processes is important for the prediction as well as for the mitigation of railway induced ground vibrations. T2 - EURODYN 2017 CY - Rome, Italy DA - 10.09.2017 KW - Vehicle-track interaction KW - Ground vibration KW - Track vibration KW - Railway measurement campaign KW - Axle box measurements PY - 2017 AN - OPUS4-42487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Mitigation of railway induced vibration at the track, in the transmission path through the soil and at the building N2 - This contribution presents some principles and some examples of the mitigation of railway-induced ground vibrations. The principles are different for the mitigation measures at the track, in the soil or at the building. Force transfer functions of isolated and un-isolated track-soil systems, reflected and transmitted wave amplitudes at walls and trenches in the soil, and the transfer of the (free-field) vibration amplitudes to the foundation amplitudes of the building are analysed. The mitigation effect can be calculated by exact or simplified formulas. Some examples with 3D (finite-element boundary-element), 2D (beam-on-support), and 1D track models, 2D and 1D soil models, detailed 3D building models and finite or infinite 1D wall-floor models are investigated to find out if simple models can be used for a satisfactory prediction of the mitigation effect. The 1D track examples show that the force transfer of the track without vehicle can be exactly calculated, whereas the total force transfer can be calculated approximately if appropriate wheelset masses per track length are used for the isolated and the un-isolated track. The mitigation effect of a filled trench is calculated by a 2D finite element model and the results compare with simple transmission formula if the stiffness per area rather than the wave impedances are used for the infill material. The base isolation of a building is analysed by a detailed 3D model and the results are similar to the analytic results of a single wall with floors on the soil. Other reduction measures as different floor and column dimensions are usually less effective so that the clearly best mitigation solution at a building is a partly or a complete base isolation. T2 - EURODYN 2017 CY - Rome, Italy DA - 10.09.2017 KW - Mitigation KW - Soil-building interaction KW - Base isolation KW - Ground vibration PY - 2017 AN - OPUS4-42488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Tracks with under-ballast plates and their mitigation of train induced ground vibration N2 - Experiments have been performed at a test site with six different tracks with under-ballast plates. Hammer excitations of the soil and the tracks as well as train passages have been measured. The experimental observations are as follows. 1. The natural soil is stiff gravel whereas the railway dam consists of softer material. 2. The track compliance indicates a soft ballast if no train is present to provide a confining pressure. 3. The track response to the train passages can be split into a low-frequency region which is ruled by the static loads and a high-frequency region which is ruled by dynamic loads. 4. The track responses to hammer and track excitation indicate the presence of many voids between the sleepers and the ballast. 5. The ground vibrations are highly influenced by the soil. Due to the stiff soil at the site, the hammer and train induced spectra have a considerable high-frequency content. 6. A reduction of the ground vibration has been observed in a low-frequency range. The mitigation effects of an under-ballast plate are also investigated by calculations of a wavenumber domain model. The under-ballast plate has an effect at low frequencies where it distributes the static load over a longer track section. The impulse of the axle passage is longer and the frequencies are lower due to the plate stiffness. The axle impulses could yield a low-frequency ground vibration in an irregular soil with a randomly varying stiffness. This low-frequency part of the ground vibration (the scattered axle impulses) seem to be reduced by the under-ballast plate. T2 - Int. Conf. Sound&Vibration CY - London, UK DA - 23.7.2017 KW - Railway vibration KW - Ballast tracks KW - Under-ballast plate KW - Ground vibration PY - 2017 AN - OPUS4-42489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Zhu, Shaocheng T1 - Dynamic testing of track damage before and after construction, after damage and after repair N2 - The Federal Institute of Material Research and Testing (BAM) has collected some experience with the testing of damaged, repaired and newly constructed railway tracks. The experimental methods are hammer testing of the track at different positions, hammer testing of the soil, measurement of train passages, and in all cases, measurements with geophones at different positions. The measured signals are evaluated for wave velocities (dispersion of the soil or the track-soil system), for transfer functions (transfer admittances of the soil, compliances of the track in amplitude and phase), and one-third octave band spectra of the track response to hammer and train excitation. These methods are applied at different stages of the track construction. Before track construction, wave velocities and transfer functions of the sub-soil can indicate problems with soft soils. After track construction, a check of the acceptable state of the track can be done by comparison of many excitation positions and track sites. After a track damage (a lose sleeper or a lose plate of a slab track) and after its repair, the sensitivity of the different measurement quantities to different track errors and the achieved improvement of the repair can be determined. The contribution shows examples of all these track situations T2 - Int. Conf. on Rail Transportation CY - Chengdu, China DA - 10.07.2017 KW - Track damage KW - Dynamic testing KW - Hammer tests KW - Train passages PY - 2017 AN - OPUS4-42490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Stengel, Dominik T1 - Measurements of downburst wind loading acting on an overhead transmission line in northern Germany N2 - Along an overhead transmission line in Northern Germany, a unique instrumentation of anemometers and force measurements is installed. Details of this test line with wind measurements along a horizontal axis are given. A recent event of a presumable downburst wind event is analyzed by means of available data and precedent works on thunderstorm analysis. The measured response of the conductors at the suspension tower is investigated and compared with time domain simulation of a finite element model. T2 - EURODYN 2017 CY - Rome, Italy DA - 10.09.2017 KW - Downburst KW - Overhead transmission line KW - Finite element method KW - Non-synoptic wind event PY - 2017 AN - OPUS4-42491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Comparative measurements and calculations of ground vibrations near slab and ballast tracks N2 - Measurements of ground and track vibrations have been performed at a high-speed line in northern Germany. Impacts on the track and the ground, and passages of different trains with different speeds on different tracks have been measured. Transfer functions of the soil are presented and approximated by theoretical soil models. By using these transfer functions, the measured ground vibration between 2 to 64 m distance from the track can be transformed into a load spectrum which can be used for predictions at other sites. The method is compared to the soil-dependent method of an emission spectrum at a certain distance (8 m for example). The influence of train type, speed and track type is discussed on the base of the different emission quantities and the original measurements. The strong influence of the track, ballast track and slab track, is analysed by a theoretical model in wavenumber domain. The response of the track to the passage of the static load is reduced by the stiffness of the slab, the deformation of the track as well as the impulse acting on the soil. Usually, the impulse on the soil should result in a slow quasi-static movement of the soil, slower at further distances. In a heterogeneous soil, however, the impulses from the static loads scatter and keep parts of the higher impulse frequency band. In this case the reduced impulse spectra of the slab track will yield reduced ground vibration in a certain frequency band. Additional (BAM and international) measurements will be used to discuss this and possible other explanations for the different ground vibration differences. T2 - Railways 2018 CY - Sitges, Spain DA - 03.09.2018 KW - Ground vibration measurements KW - Train passages KW - Tran speed KW - Train configuration KW - Ballast track KW - Slab track PY - 2018 AN - OPUS4-46401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Vehicle-track-soil interaction and train-induced ground vibration: Theory and measurements in Germany, Switzerland and France N2 - Three measurement campaigns of train-induced ground vibrations are evaluated for the vehicle-track-soil interaction. Ground vibrations, track vibrations and vehicle vibrations have been measured for train passages and impulse excitation and compared with theoretical results. The soil and the track-soil system are calculated by wavenumber integrals. The influence of the vehicle is introduced by a substructure method. By comparing theory and measurement the different components of excitation force and ground vibration can be analysed, the quasi-static excitation, track-alignment errors, the out-of-roundness of wheels, the wheel and rail roughness, and moreover, scattered axle impulses and ineffective high-frequency parts of the wheelset accelerations and Forces. T2 - Recent Advance in Structural Dynamics CY - Lyon, France DA - 15.04.2019 KW - Vehicle-track-soil interaction KW - Train-induced ground vibration PY - 2019 AN - OPUS4-47893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Roughness and wheelset acceleration from axle-box measurements for understanding the generation and mitigation of ground vibrations N2 - Two measurement campaigns of train-induced ground vibrations are evaluated for the vehicle-track-soil interaction. Ground vibrations, track vibrations and vehicle vibrations have been measured for train passages and impulse excitation and compared with theoretical results. The soil and the track-soil system are calculated by wavenumber integrals. The influence of the vehicle is introduced by a substructure method. By comparing theory and measurement the different components of excitation force and ground vibration can be analysed, the quasi-static excitation, track-alignment errors, the out-of-roundness of wheels, the wheel and rail roughness, and moreover, scattered axle impulses and ineffective high-frequency parts of the wheelset accelerations and forces. T2 - ISO/TC 108/SC 2/WG 8 Working group Ground-borne noise and vibration from rail systems CY - Berlin, Germany DA - 12.03.2019 KW - Vehicle-track-soil interaction KW - Train-induced ground vibration PY - 2019 AN - OPUS4-47894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -