TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - Strukturschwingungen und Schwingungsminderung – Bauwerksmodelle, Messungen vor Ort und auf dem Versuchsgelände der BAM N2 - Die Grundidee einer Schwingungsminderung ist es eine tiefe Eigenfrequenz der Struktur zu erreichen, so dass höhere Frequenzen abgemindert werden. Das gilt für die Minderung an der Quelle, zum Beispiel einem Eisenbahngleis, und für die Minderung am Empfänger, dem Gebäude. Die Eigenfrequenz ermittelt man aus dem Verhältnis der Auflagersteifigkeit und der Masse. Wie ist die Masse bei einem Gebäude zu wählen? Und wie ist die Untergrund-steifigkeit zu berücksichtigen? Als Referenzsituation ohne Minderungsma߬nahme? Der Beitrag bringt Rechenergebnisse zu abgefederten Gebäuden mit einfachen und komplexen (FE-) Modellen, Mess- und Rechenergebnisse zur Schwingungsübertragung von unabge-federten Gebäuden. Es wird der Einfluss der Abstimmfrequenz, der Bodensteifigkeit und der „starren“ Gebäudemasse untersucht. Die komplexen Gebäudemodelle erlauben, neben der Berechnung einer elastischen Gebäudelagerung, auch die Variation von Gebäudepara¬metern zur Reduktion der Deckenschwingungen. Den Ergebnissen bei der Erschütterungs-übertragung in Gebäude werden zwei ähnliche Beispiele zur elastischen Maschinenlagerung und zur elastischen Gleislagerung gegenübergestellt. T2 - 6. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 17.04.2018 KW - Elastische Gebäudelagerung KW - Rechenmodelle PY - 2018 AN - OPUS4-45472 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Said, Samir A1 - Auersch, Lutz T1 - Prediction of explosion-induced ground and building vibrations - measured wave velocities, transfer functions and attenuation N2 - Explosion-induced ground vibrations have been measured at several places. Results about the wave propagation are shown in this contribution. The particle velocities of the soil have been measured at up to 1000 m distance from the explosion and are presented as time records (seismograms) and one-third octave band spectra (transfer functions). The results are compared with the results of hammer impacts. The seismograms clearly show different wave types, compressional waves of the air, the water and the soil, and the Rayleigh wave. The hammer impacts yield good results up to 100 m and incorporate higher frequencies at about 50 Hz, whereas the explosion results in a ground vibration with frequencies around 10 Hz and a longer range of influence. Explosion and hammer excitations are evaluated for the wave velocities of the soil by using the wavenumber and the spatial auto-correlation method. The attenuation of the ground vibration amplitudes A with distance r can well be presented by a power law A ~ r -q. This type of amplitude-distance law and the corresponding power q > 1 are substantiated in the contribution. The influence of the charge weight W is evaluated as an additional power law A ~ W -p for each measuring site. The power is found quite similarly around q  0.6 as all sites have a medium soft soil such as sand and clay. The obtained amplitude-charge-distance law can be used to predict the explosion-induced ground and building vibrations at other sites. T2 - International Congress on Sound and Vibration (ICSV25) CY - Hiroshima, Japan DA - 08.07.2018 KW - Prediction of explosion induced ground and building vibration KW - Explosion-induced ground vibrations KW - Hammer impact KW - Soil properties KW - Amplitude-distance laws KW - Amplitude-charge weight laws PY - 2018 SN - 978-83-7880-552-6 SN - 2329-3675 SP - 1 EP - 8 PB - Silesian University of Technology Press CY - Gliwice, Poland AN - OPUS4-45506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Auersch, Lutz A1 - Said, Samir ED - Bian, Xuecheng ED - Chen, Y. ED - Ye, X. T1 - Vibration measurements for the control of damaged and repaired railway tracks N2 - This contribution presents experimental methods to detect track damage. At BAM (Federal Institute of Material Research and Testing), a measuring car with a measuring system of 72 channels, geophones, mountings, cables, harmonic and impulsive exciters is used for dynamic measurements of the track, the soil and buildings. An instrumented hammer allows force measurements and to evaluate transfer functions of the track, and the soil. Wave measurements are used to identify the soil characteristics. Train passages are measured at the track and for the train induced ground vibrations. In addition to these in situ options, tests of tracks or track elements can be performed in a large laboratory. KW - Track vibration KW - Track damage PY - 2018 SN - 978-981-10-4507-3 DO - https://doi.org/10.1007/978-981-10-4508-0_2 SP - 13 EP - 30 PB - Springer CY - Singaporer AN - OPUS4-45457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - Strukturschwingungen und Schwingungsminderung - Bauwerksmodelle, Messungen vor Ort und auf dem Versuchsgelände der BAM T1 - Structural Vibrations and Vibration Reduction Building Models, On-site Measurements and Test Site of the BAM N2 - Die Grundidee einer Schwingungsminderung ist es eine tiefe Eigenfrequenz der Struktur zu erreichen, so dass höhere Frequenzen abgemindert werden. Das gilt für die Minderung an der Quelle, zum Beispiel einem Eisenbahngleis, und für die Minderung am Empfänger, dem Gebäude. Die Eigenfrequenz ermittelt man aus dem Verhältnis der Auflagersteifigkeit und der Masse. Wie ist die Masse bei einem Gebäude zu wählen? Und wie ist die Untergrundsteifigkeit zu berücksichtigen? Als Referenzsituation ohne Minderungsmaßnahme? Der Beitrag bringt Rechenergebnisse zu abgefederten Gebäuden mit einfachen und komplexen (FE-) Modellen, Mess- und Rechenergebnisse zur Schwingungsübertragung von unabgefederten Gebäuden. Es wird der Einfluss der Abstimmfrequenz, der Bodensteifigkeit und der „starren“ Gebäudemasse untersucht. Die komplexen Gebäudemodelle erlauben, neben der Berechnung einer elastischen Gebäudelagerung, auch die Variation von Gebäudeparametern zur Reduktion der Deckenschwingungen. Den Ergebnissen bei der Erschütterungs-übertragung in Gebäude werden zwei ähnliche Beispiele zur elastischen Maschinenlagerung und zur elastischen Gleislagerung gegenübergestellt. T2 - 6. VDI Fachtagung Baudynamik CY - Würzburg, Germany DA - 17.04.2018 KW - Rechenmodelle KW - Elastische Gebäudelagerung PY - 2018 SN - 978-3-18-092321-5 SN - 0083-5560 VL - 2321 SP - 421 EP - 434 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-45471 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Simple and fast prediction of train-induced track forces, ground and building vibrations N2 - A simple and fast prediction scheme is presented for train induced ground and building vibrations. Simple models such as (1-dimensional) transfer matrices are used for the vehicle-track-soil interaction and for the building-soil interaction. The wave propagation through layered soils is approximated by a frequency-dependent homogeneous half-space. The prediction is divided into the parts “emission” (excitation by railway traffic), “transmission” (wave propagation through the soil) and “immission” (transfer into a building). The link between the modules is made by the excitation force between emission and transmission, and by the free-field vibration between transmission and immission. All formula for the simple vehicle-track, soil and building models are given in this article. The behaviour of the models is demonstrated by typical examples, that is the mitigation of train vibrations by elastic track elements, the low- and high-frequency cut-offs characteristic for layered soils, and the interacting soil, wall and floor resonances of multi-storey buildings. It is shown that the results of the simple prediction models can well represent the behaviour of the more time-consuming detailed models, the finite-element boundary-element models of the track, the wavenumber integrals for the soil, and the three-dimensional finite-element models of the building. In addition, measurement examples are given for each part of the prediction confirming that the methods provide reasonable results. As the prediction models are fast in calculation, many predictions can be done, for example to assess the environmental effect along a new railway line. The simple models have the additional advantage that the user needs to know only a minimum of parameters. So, the prediction is fast and user-friendly, but also theoretically and experimentally well-founded. KW - Railway induced vibration KW - Ground vibration KW - Layered soil KW - Building response KW - Excitation forces KW - Track and vehicle irregularities PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513340 DO - https://doi.org/10.1007/s40534-020-00218-7 SN - 2662-4745 VL - 28 IS - 3 SP - 232 EP - 250 PB - Springer AN - OPUS4-51334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Slab track behaviour under train passage and hammer impact – Measurements at different sites and calculated track interaction with continuous soils N2 - This contribution intends to give an overview on the vibration behaviour of slab tracks in comparison of measurements and calculations and also by comparison of different track types at more than ten different measuring sites. In theory, tracks on continuous soil are calculated by the frequency-wavenumber domain method. In experiment, geophone measurements are transformed to displacement results. Two aspects of track behaviour are considered, the frequency-dependant compliance of the track, measured by hammer impact, and the deflection under a passing axle load. In theory, the response to a single axle can be calculated, whereas in experiment, only the passage of the whole train can be measured. For comparison of theory and experiment, the calculated deflection under a single axle is superposed to get the response of the whole train. As a result, the slab track characteristics are completely different from the ballast track characteristics where each axle can be seen in the time histories. The slab track has a more global behaviour where only a whole bogie can be found in the track response and moreover, the two neighbouring bogies are not completely separated. The measurement of the different track elements (rail, sleeper, track plate, base layer) and the frequency-dependant compliances with possible resonances yield further information About the properties of the track elements. The calculations show that the soil has the dominant influence on the amplitudes and the width of the track-plate displacements. In the measurement results, the following parameters are analysed: slab track vs. ballast track, different types of slab tracks, damaged slab tracks, different trains, switches at different measuring points, voided sleepers, an elastic layer, the mortar layer, and different soils at different places. Finally, a good agreement between measured and calculated results is found for the normal and some special (damaged, floating) slab tracks. KW - Slab track KW - Train passage KW - Hammer impact KW - Compliance function KW - Track deflection PY - 2020 UR - https://iiav.org/ijav/index.php?va=viewpage&vaid=177&id_number=95 DO - https://doi.org/10.20855/ijav.2020.25.31622 SN - 1027-5851 VL - 25 IS - 3 SP - 341 EP - 354 PB - International Institute of Acoustics and Vibration CY - Gliwice AN - OPUS4-51346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - A mid-frequency component of train-induced ground vibration due to scattered axle impulses and the irregularities of the soil and ballast N2 - The passage of the train is dominated by the impulses of the static axle loads. The response of the regular homogeneous and irregular soils has been calculated by the finite-element method in frequency domain. The superposition of the impulse responses yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil or ballast of which the stiffness varies randomly in space, a mid-frequency ground vibration component is generated by the scattering of the axle impulses. Measurements will be shown which prove the existence of the mid-frequency ground vibration component and the unique explanation by the scattered axle impulses: many international measurements with a raised mid-frequency component, axle-box measurements with a too low mid-frequency dynamic load, amplitude-speed dependencies which are incompatible with irregularity-induced dynamic loads, and ground vibration reductions due to stiff track elements. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD) CY - Online meeting DA - 07.09.2020 KW - Ground vibration KW - Railway KW - Irregular soil KW - Irregular ballast KW - Axle impulses PY - 2020 SP - 2611 EP - 2625 PB - KULeuven CY - Leuven AN - OPUS4-51210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Natural frequencies and modes of poles, beams, floors, road and rail bridges N2 - In the last three decades, the vibrations of many floors and bridges have been measured. The contribution shows some evaluation methods, experimental results and some modelling and theoretical results. Simple evaluation methods have been developed for single and coupled floors. Two coupled beams have been measured in good agreement with the theory. A more complex coupling model has been found for a large wooden floor in a castle consisting of six floor bays which correlates well with the measurements. Damaged and intact poles have been tested by their natural frequencies and damping values, and a fair correlation between the degree of damage and the shift of the frequency. Road bridges have been analysed in detail and some examples are presented. Railway bridges and trains are studied for resonant excitation. The risk of resonance can be estimated in frequency domain by using axle-sequence spectra of the train and the natural frequencies of the bridge. A measurement example shows the amplification, but even stronger the cancellation of the subsequent axle responses. Several high-speed trains and freight trains have been analysed for their potential resonance amplification. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Modalanalyse KW - Bauwerke KW - Bauteile KW - Brücken KW - Achsfolgespektren PY - 2020 SP - 1573 EP - 1585 PB - KULeuven CY - Leuven AN - OPUS4-51211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - A mid-frequency component of train-induced ground vibration due to scattered axle impulses and the irregularities of the soil and ballast N2 - The passage of the train is dominated by the impulses of the static axle loads. The response of the regular homogeneous and irregular soils has been calculated by the finite-element method in frequency domain. The superposition of the impulse responses yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil or ballast of which the stiffness varies randomly in space, a mid-frequency ground vibration component is generated by the scattering of the axle impulses. Measurements will be shown which prove the existence of the mid-frequency ground vibration component and the unique explanation by the scattered axle impulses: many international measurements with a raised mid-frequency component, axle-box measurements with a too low mid-frequency dynamic load, amplitude-speed dependencies which are incompatible with irregularity-induced dynamic loads, and ground vibration reductions due to stiff track elements. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Ground vibration KW - Railway KW - Irregular soil KW - Irregular ballast KW - Axle impulses PY - 2020 AN - OPUS4-51212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Natural frequencies and modes of poles, beams, floors, road and rail bridges N2 - In the last three decades, the vibrations of many floors and bridges have been measured. The contribution shows some evaluation methods, experimental results and some modelling and theoretical results. Simple evaluation methods have been developed for single and coupled floors. Two coupled beams have been measured in good agreement with the theory. A more complex coupling model has been found for a large wooden floor in a castle consisting of six floor bays which correlates well with the measurements. Damaged and intact poles have been tested by their natural frequencies and damping values, and a fair correlation between the degree of damage and the shift of the frequency. Road bridges have been analysed in detail and some examples are presented. Railway bridges and trains are studied for resonant excitation. The risk of resonance can be estimated in frequency domain by using axle-sequence spectra of the train and the natural frequencies of the bridge. A measurement example shows the amplification, but even stronger the cancellation of the subsequent axle responses. Several high-speed trains and freight trains have been analysed for their potential resonance amplification. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Modalanalyse KW - Bauwerke KW - Bauteile KW - Brücken KW - Achsfolgespektren PY - 2020 AN - OPUS4-51213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -