TY - CONF A1 - Auersch, Lutz T1 - Die Minderung von Bahnerschütterungen – Messergebnisse aus Österreich, Deutschland und der Schweiz N2 - Die Minderung von Bahnerschütterungen neben Eisenbahnstrecken ist an vielen Stellen gemessen worden. Dabei ist neben der hochfrequenten Wirkung von elastischen Gleiselementen wie Schienenlager, Schwellensohlen und Unterschottermatten auch oft eine tieffrequente Minderung beobachtet worden. Diese tieffrequente Minderung wird interpretiert und mit der weiteren Lastverteilung der statischen Last erklärt. T2 - 3. Wiener Dynamik Tage CY - Vienna, Austria DA - 25.07.2024 KW - Bahnerschütterungen KW - Minderung KW - Messungen KW - Schwellensohlen KW - Unterschottermatten KW - Gleistrog PY - 2024 SP - 1 EP - 13 AN - OPUS4-61244 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Auersch, Lutz T1 - Prognosemethoden für die Erschütterungsübertragung in Gebäude N2 - Es wurde ein Prognosemodell für die Bauwerksschwingungen entwickelt. Es besteht aus einer Gesamtbauwerkswand, die alle Wände und Stützen eines Bauwerks repräsentiert, und aus den Decken in den einzelnen Stockwerken. Das Modell wird stockwerkweise mit Übertragungsmatrizen berechnet. Hinsichtlich der Decken besteht im Programm die Möglichkeit, die Deckeneigenfrequenz aus den Abmessungen und den Auflagerbedingungen berechnen zu lassen. Die Decken werden dann im Rechenprogramm als Modalmodelle realisiert und an den Deckenauflagern in die Übertragungsmatrizenkette eingebaut. Aus diesem Komplexmodell des Gebäudes wurde entsprechend den Messerfahrungen ein praxisnäheres Standardmodell abgeleitet. Dazu werden die Wandamplituden aller Stockwerke gemittelt und bei den Decken wird eine gewisse Bandbreite der vorhandenen Deckeneigenfrequenzen unterstellt. Entsprechend der hohen Bedeutung, den experimentelle Ergebnisse für die Prognose der Erschütterungsimmission haben, wurden sehr viele in der BAM vorhandene Messdaten erneut ausgewertet und darüber hinaus neue Gebäudemessungen durchgeführt. Die Messergebnisse wurden bei der Definition des Standardmodells herangezogen. Außerdem wurde die Auswahl der Fundamentparameter mit den Messerfahrungen abgeglichen. Schließlich geben die Messdaten von etwa 80 Decken wichtige Hinweise auf die richtige Wahl der Deckenparameter Eigenfrequenz und Dämpfung. Eine Parameterstudie gibt Auskunft über die praktisch vorkommende Bandbreite der einzelnen Parameter und deren Auswirkung auf die Bauwerksamplituden. Die wichtigsten Parameter sind die Bodensteifigkeit und die Deckeneigenfrequenz, die die Abminderung der Gesamtbauwerksamplituden einerseits und die Amplitudenverstärkungen in der Deckenresonanzen andererseits bestimmen. Für diese beiden Parameter ergaben die Untersuchungen wesentliche Hinweise: Für die Gebäudegründung sind die weicheren oberen Bodenschichten maßgeblich, und die Deckeneigenfrequenzen lassen sich in erster Näherung gut durch eine allseitig gelenkige Lagerung abbilden. Mit den theoretischen und experimentellen Arbeiten konnte somit ein praxisgerechter Immissionsteil für die Erschütterungsprognose erstellt werden. KW - Immissionsprognose KW - Bauwerk-Boden-Wechselwirkung KW - Deckenschwingungen KW - Decke-Wand-Boden-Modell KW - Übertragungsmatrizen PY - 2006 SP - 1 EP - 87 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) AN - OPUS4-56223 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Auersch, Lutz T1 - Prognosemethoden für die Erschütterungsausbreitung im Boden N2 - In diesem Bericht werden die Berechnungsmethoden für die Transmission der Erschütterungen dargelegt. Da es sich um die Wellenausbreitung im Boden handelt, sind drei große Abschnitte dem Einfluss und den Berechnungsmöglichkeiten verschiedener homogener und geschichteter Böden gewidmet. Dabei kommt ein exaktes aufwändiges Rechenverfahren und daraus abgeleitete einfachere Näherungsverfahren zum Einsatz. Zum Bodeneinfluss wurden verschiedene homogene und geschichtete Böden exakt berechnet. Daraus wird ein Näherungsverfahren abgeleitet, dass auf der Dispersionsbeziehung v(f) beruht. Die Dispersion einiger Fälle wird exakt berechnet und ein Näherungsverfahren gefunden, mit dem man aus dem Tiefenprofil v(z) die Dispersion v(f) ermitteln kann. Mitden Näherungsverfahren werden die Wellenfelder der verschiedenen Böden nachgerechnet. Es ergeben sich sehr gute Übereinstimmungen mit den exakten Ergebnissen. Die Zuganregung wird in erster Linie mit ortsfesten dynamischen Achslasten erfasst. Mit der Lastverteilung über die gesamte Zuglänge ergibt sich eine deutlich andere, nämlich schwächere Abnahmegesetzmäßigkeit als für die elementare Punktlast. Für die Prognose von Schienenverkehrserschütterungen wurden verschiedene Verfahren vorgestellt, die die theoretischen Methoden zur Wellenausbreitung im Boden auf der experimentellen Seite ergänzen. Dies beginnt bei der notwendigen Ermittlung der Bodenkennwerte für den Prognoseort, das führt weiter zur sehr hilfreichen Bestimmung der Übertragungsfunktion am Prognoseort, und schließlich zur kritischen Verwendung von gemessenen Spektren als Emissionsgröße. Die verschiedenen Verfahren werden anhand der Messungen der ICE 3-und Thalys-Versuchsfahrten bei Gardelegen vorgeführt. Die wichtigsten Aussagen dieser Untersuchung sind: – Die Ergebnisse der Schwinger- und Impulsmessungen, die Bodenkennwerte und die Übertragungsfunktionen, Theorie und Messungen stimmen alle sehr gut miteinander überein. – Es sind gute Prognosen der Schienenverkehrserschütterungen sowohl mit den theoretischen als auch den experimentellen Übertragungsfunktionen möglich (s. Bild 39 im Vergleich zu Bild 40). – Die Verwendung von gemessenen Schienenverkehrserschütterungen als Emissionsspektrum wird ermöglicht. Sie ist aber an die Kenntnis der Bodenkennwerte am Messort gekoppelt. Mit den Bodenkennwerten am Messort können dann bodenunabhängige Lastspektren als Emissionsgröße berechnet werden. Damit steht eine Vielfalt von theoretischen und messtechnischen Varianten für die Prognose der Erschütterungsausbreitung im Boden zur Verfügung. KW - Geschichter Boden KW - Wellengeschwindigkeit KW - Übertragungsfunktion KW - Wellenzahlmethode KW - Approximationsverfahren KW - Bodensteifigkeit KW - Bodendämpfung PY - 2006 SP - 1 EP - 83 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) AN - OPUS4-56222 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Frequenz- und bodenabhängige Prognose und Minderung von Bahnerschütterungen N2 - Die Prognose und Minderung von Bahnerschütterungen haben eine lange Tradition in der Bundesanstalt für Materialforschung und -prüfung. Im Jahr 2006 wurde eine Prognose-Software fertiggestellt, die viele Forschungs- und Messergebnisse zusammenfasst. Sie umfasst die Teilbereiche Emission (die Anregung durch die Fahrzeug-Fahrweg-Untergrund-Wechselwirkung), die Transmission (die Ausbreitung durch den Boden) und die Immission (die Übertragung vom Freifeld in ein Gebäude). Die Prognose geschieht in allen Teilen mit einfachen Formeln, die veröffentlicht sind und zur Anwendung für Jedermann zur Verfügung stehen. Es werden Beispiele zur Emission und zur Transmission gezeigt. Im Bereich Transmissionsprognose werden zu den Anregungskräften (aus dem Emissionsteil) die Bodenerschütterungen als Schwinggeschwindigkeitsterzspektren berechnet. Das Ergebnis hängt stark von der Bodensteifigkeit, -dämpfung und -schichtung ab. Dies wurde später mit einer Messkampagne in der Schweiz an 10 Messorten bestätigt. Die Berechnung erfolgt näherungsweise für einen geschichteten Boden mit einer frequenzabhängigen Wellengeschwindigkeit (Dispersion) oder einem tiefenabhängigen Wellengeschwindigkeitsprofil. Die Anregungskräfte werden im Prognosebereich Emission mit einem 2-dimensionalen Gleismodell berechnet. 1-dimensionale Modelle liefern meist falsche Ergebnisse und 3-dimensionale Modelle (zum Beispiel mit der kombinierten Finite-Element-Randelement-Methode) sind für eine Erschütterungs¬prognose sicherlich zu aufwändig. Das 2-dimensionale Modell wurde an 3-dimensionale Ergebnisse so angepasst, dass die Ergebnisse für viele Gleise und Böden annähernd zutreffen. Auch Minderungs¬maßnahmen am Gleis können mit diesem Modell sehr gut berechnet werden. Die Prognoseverfahren wurden in den folgenden Jahren weiter verfeinert. Es wurde die quasi-statische Anregung durch die bewegten statischen Zuglasten mit einer Näherungsformel ergänzt, so dass auch das tieffrequente Nahfeld realistisch erfasst werden kann. Mit der Berücksichtigung der Achsfolge (insbesondere zwischen den Achsen im Drehgestell) ergeben sich zwei typische Minima in den Erschütterungsspektren, die oft auch in den Messungen beobachtet werden. Der Amplitudenanteil zwischen diesen beiden Minima ist oft stärker angehoben, so dass hier eine zusätzliche Erschütterungsanregung vermutet wird. Dieser Anteil kann rein empirisch prognostiziert werden, so wie das in den englischen Prognosen (zuletzt für das Highspeed2-Projekt) enthalten ist. Die Begründung dieses Anteils ist allerdings nicht die Achsfolge, sondern die Zerstreuung der statischen Achslastimpulse durch einen unregelmäßigen Gleisuntergrund und Boden. Die messtechnische Ermittlung eines Minderungseffektes ist komplizierter als allgemein angenommen. Es reicht nicht aus, jeweils an einem Messpunkt in der Nähe eines Gleises mit und ohne Minderungsmaßnahme die Erschütterungen zu messen und aus dem Verhältnis der Amplituden (beziehungsweise aus der Differenz der Pegel) „die Einfügedämmung“ zu ermitteln. Es wird an Beispielen gezeigt, wie man hier sinnvoller vorgehen kann. 1. Zunächst ist es wichtig, nicht nur die Einfügedämmung sondern auch die Originalspektren mit und ohne Minderung zu dokumentieren und zu veröffentlichen, damit man kontrollieren kann, ob wesentliche Amplituden und Frequenzbereiche reduziert sind oder ob es sich um eher zufällige Minderungen oder Verstärkungen handelt. (Beispiel Unterschottermatte/Raron, Müller/SBB) 2. Der Messpunkt sollte nicht im Nahbereich des Gleises liegen, da ansonsten eine zu günstige, falsche Einfügedämmung bestimmt wird. (Beispiel Tunnel/ Leipzig/Breitsamter) 3. Um Zufälligkeiten zu vermeiden, sollte man an mehr als einem Punkt messen. (Beispiel Unterschotterplatte/Altheim/Auersch) 4. Man sollte eigentlich immer auch die Bodenkennwerte (Steifigkeit, Dämpfung, Amplituden-abnahme, Übertagungsfunktion) messen. Selbst bei nahegelegene Messquerschnitten kann man Überraschungen erleben. (Beispiel erste ICE-Messungen/bei Würzburg/Auersch) 5. Bei verschiedenen Bodenkennwerten kann man eine Korrektur durchführen. (Beispiel Gleis-tröge/Mistler) Am besten bestimmt man ein äquivalentes Kraftspektrum zu jedem Messort und jedem Messzug (Beispiel Feste Fahrbahn/Gardelegen/Auersch) 6. Prinzipiell gibt es nicht die Einfügedämmung einer Maßnahme. Die Einfügedämmung ist immer boden- und referenzsystemabhängig. Die „beste“ Einfügungsdämmung erhält man mit einem steifen Untergrund (Beispiel Unterschottermatte/Tunnel/München Gasteig/Wettschureck) Das heißt aber nicht, dass die Maßnahme durch einen künstlich versteiften Untergrund besser wird (Beispiel Unterschottermatten/RRT2006/Auersch) Es werden Messbeispiele gezeigt, die alle neben einer hochfrequenten dynamischen Minderung auch eine mittelfrequente quasi-statische Minderung aufweisen. Dabei wird der mittelfrequente Zerstreuanteil der statischen Achslastimpulse durch die breitere Lastverteilung und damit die Impulsdehnung der Achslastimpulse reduziert. Diese Impulsdehnung lässt sich mit dem 2-dimensionalen Gleismodell berechnen. Die Minderungswirkung hängt aber wiederum vom Referenzsystem und dessen unregelmäßiger Steifigkeitsverteilung ab. Je unregelmäßiger der Boden und Gleisuntergrund des Referenzsystems, desto stärker ist die Minderungswirkung. T2 - 24. Symposium für Baudynamik und Erschütterungsmessungen CY - Dübendorf, Sitzerland DA - 09.06.2023 KW - Bahnerschütterungen KW - Erschütterungsprognose KW - Erschütterungsminderung KW - Elastische Gleiselemente KW - Gleiströge KW - Zerstreute Achsimpulse PY - 2023 SP - 1 EP - 32 PB - Ziegler Consultants CY - Zürich AN - OPUS4-57953 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Frequenz- und bodenabhängige Prognose und Minderung von Bahnerschütterungen N2 - Die Prognose und Minderung von Bahnerschütterungen haben eine lange Tradition in der Bundesanstalt für Materialforschung und -prüfung. Im Jahr 2006 wurde eine Prognose-Software fertiggestellt, die viele Forschungs- und Messergebnisse zusammenfasst. Sie umfasst die Teilbereiche Emission (die Anregung durch die Fahrzeug-Fahrweg-Untergrund-Wechselwirkung), die Transmission (die Ausbreitung durch den Boden) und die Immission (die Übertragung vom Freifeld in ein Gebäude). Die Prognose geschieht in allen Teilen mit einfachen Formeln, die veröffentlicht sind und zur Anwendung für Jedermann zur Verfügung stehen. Es werden Beispiele zur Emission und zur Transmission gezeigt. Im Bereich Transmissionsprognose werden zu den Anregungskräften (aus dem Emissionsteil) die Bodenerschütterungen als Schwinggeschwindigkeitsterzspektren berechnet. Das Ergebnis hängt stark von der Bodensteifigkeit, -dämpfung und -schichtung ab. Dies wurde später mit einer Messkampagne in der Schweiz an 10 Messorten bestätigt (Bild 1). Die Berechnung erfolgt näherungsweise für einen geschichteten Boden mit einer frequenzabhängigen Wellengeschwindigkeit (Dispersion) oder einem tiefenabhängigen Wellengeschwindigkeitsprofil. Die Anregungskräfte werden im Prognosebereich Emission mit einem 2-dimensionalen Gleismodell berechnet (Bild 2). 1-dimensionale Modelle liefern meist falsche Ergebnisse und 3-dimensionale Modelle (zum Beispiel mit der kombinierten Finite-Element-Randelement-Methode) sind für eine Erschütterungs¬prognose sicherlich zu aufwändig. Das 2-dimensionale Modell wurde an 3-dimensionale Ergebnisse so angepasst, dass die Ergebnisse für viele Gleise und Böden annähernd zutreffen. Auch Minderungs¬maßnahmen am Gleis können mit diesem Modell sehr gut berechnet werden. Die Prognoseverfahren wurden in den folgenden Jahren weiter verfeinert. Es wurde die quasi-statische Anregung durch die bewegten statischen Zuglasten mit einer Näherungsformel ergänzt, so dass auch das tieffrequente Nahfeld realistisch erfasst werden kann. Mit der Berücksichtigung der Achsfolge (insbesondere zwischen den Achsen im Drehgestell) ergeben sich zwei typische Minima in den Erschütterungsspektren, die oft auch in den Messungen beobachtet werden. Der Amplitudenanteil zwischen diesen beiden Minima ist oft stärker angehoben, so dass hier eine zusätzliche Erschütterungsanregung vermutet wird. Dieser Anteil kann rein empirisch prognostiziert werden, so wie das in den englischen Prognosen (zuletzt für das Highspeed2-Projekt) enthalten ist. Die Begründung dieses Anteils ist allerdings nicht die Achsfolge, sondern die Zerstreuung der statischen Achslastimpulse durch einen unregelmäßigen Gleisuntergrund und Boden. Die messtechnische Ermittlung eines Minderungseffektes ist komplizierter als allgemein angenommen. Es reicht nicht aus, jeweils an einem Messpunkt in der Nähe eines Gleises mit und ohne Minderungs¬maßnahme die Erschütterungen zu messen und aus dem Verhältnis der Amplituden (beziehungsweise aus der Differenz der Pegel) „die Einfügedämmung“ zu ermitteln. Es wird an Beispielen gezeigt, wie man hier sinnvoller vorgehen kann. 1. Zunächst ist es wichtig, nicht nur die Einfügedämmung sondern auch die Originalspektren mit und ohne Minderung zu dokumentieren und zu veröffentlichen, damit man kontrollieren kann, ob wesentliche Amplituden und Frequenzbereiche reduziert sind oder ob es sich um eher zufällige Minderungen oder Verstärkungen handelt. (Beispiel Unterschottermatte/Raron, Müller/SBB) 2. Der Messpunkt sollte nicht im Nahbereich des Gleises liegen, da ansonsten eine zu günstige, falsche Einfügedämmung bestimmt wird. (Beispiel Tunnel/ Leipzig/Breitsamter) 3. Um Zufälligkeiten zu vermeiden, sollte man an mehr als einem Punkt messen. (Beispiel Unterschotterplatte/Altheim/Auersch) 4. Man sollte eigentlich immer auch die Bodenkennwerte (Steifigkeit, Dämpfung, Amplituden-abnahme, Übertagungsfunktion) messen. Selbst bei nahegelegene Messquerschnitten kann man Überraschungen erleben. (Beispiel erste ICE-Messungen/bei Würzburg/Auersch) 5. Bei verschiedenen Bodenkennwerten kann man eine Korrektur durchführen. (Beispiel Gleis-tröge/Mistler) Am besten bestimmt man ein äquivalentes Kraftspektrum zu jedem Messort und jedem Messzug (Beispiel Feste Fahrbahn/Gardelegen/Auersch) 6. Prinzipiell gibt es nicht die Einfügedämmung einer Maßnahme. Die Einfügedämmung ist immer boden- und referenzsystemabhängig. Die „beste“ Einfügungsdämmung erhält man mit einem steifen Untergrund (Beispiel Unterschottermatte/Tunnel/München Gasteig/Wettschureck) Das heißt aber nicht, dass die Maßnahme durch einen künstlich versteiften Untergrund besser wird (Beispiel Unterschottermatten/RRT2006/Auersch) Es werden Messbeispiele gezeigt, die alle neben einer hochfrequenten dynamischen Minderung auch eine mittelfrequente quasi-statische Minderung aufweisen. Dabei wird der mittelfrequente Zerstreuanteil der statischen Achslastimpulse durch die breitere Lastverteilung und damit die Impulsdehnung der Achslastimpulse reduziert. Diese Impulsdehnung lässt sich mit dem 2-dimensionalen Gleismodell berechnen. Die Minderungswirkung hängt aber wiederum vom Referenzsystem und dessen unregel¬mäßiger Steifigkeitsverteilung ab. Je unregelmäßiger der Boden und Gleisuntergrund des Referenz¬systems, desto stärker ist die Minderungswirkung. T2 - 24. Symposium für Baudynamik und Erschütterungsmessungen CY - Dübendorf, Switzerland DA - 09.06.2023 KW - Bahnerschütterungen KW - Erschütterungsprognose KW - Erschütterungsminderung KW - Elastische Gleiselemente KW - Gleiströge KW - zerstreute Achslastimpulse PY - 2023 AN - OPUS4-57952 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Auersch, Lutz T1 - Zur Entstehung und Ausbreitung von Schienenverkehrserschütterungen: Theoretische Untersuchungen und Messungen am Hochgeschwindigkeitszug Intercity Experimental N2 - Neuere Ergebnisse insbesondere zur Erschütterungsproblematik, damit verbunden auch Ergebnisse zur Fahrzeugdynamik und zur Fahrweg- und Untergrundbelastung. Theorie und Praxis ergeben übereinstimmend wichtige Folgerungen für Hochgeschwindigkeitsverkehr. T3 - BAM Forschungsberichtreihe - 155 KW - Erschütterungen KW - Schienenverkehr KW - Hochgeschwindigkeitszüge KW - Fahrzeugdynamik KW - Fahrwegdynamik KW - Bodendynamik KW - Wellenausbreitung KW - Kopplung des Fahrzeug-Fahrweg-Untergrund-Systems KW - Schwellenabstandsanregung KW - Parametererregung PY - 1988 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-2951 SN - 978-3-88314-825-3 SN - 0938-5533 VL - 155 SP - 1 EP - 194 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-295 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Auersch, Lutz T1 - Wechselwirkung starrer und flexibler Strukturen mit dem Baugrund insbesondere bei Anregung durch Bodenerschütterungen N2 - Es wird ein Rechenverfahren vorgestellt, das die Randelementmethode zur Beschreibung des Bodens mit der Finite-Element-Methode für das Bauwerk verbindet. Am Grundproblem der Bauwerk-Boden-Wechselwirkung, der dynamischen Steifigkeit starrer Fundamente auf dem Baugrund, werden diese Verfahren und einige Verfahrensvarianten erprobt und miteinander verglichen. T3 - BAM Forschungsberichtreihe - 151 KW - Bauwerk-Boden-Wechselwirkung KW - Baudynamik KW - Erschütterungen KW - Wellenfeld KW - Fundamente KW - Randelementmethode PY - 1988 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-2990 SN - 978-3-88314-785-0 SN - 0938-5533 VL - 151 SP - 1 EP - 132 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-299 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Auersch, Lutz A1 - Said, Samir A1 - Rücker, Werner T1 - Das Fahrzeug-Fahrweg-Verhalten und die Umgebungserschütterungen bei Eisenbahnen N2 - In dem Forschungsvorhaben „Das Fahrzeug-Fahrweg-Verhalten“ im Hinblick auf die Prognose von Zugerschütterungen und die Optimierung von Minderungsmaßnahmen – Förderkennzeichen BMBF 9346 - wurden sehr komplexe, vielfältig ineinander verzahnte und simultane Fahrzeug-, Fahrweg-, Brücken- und Zugmessungen durchgeführt. Mit diesem umfangreichen Arbeitsprogramm wurde die Relevanz verschiedener Anregungs- und Beanspruchungsanteile untersucht und eine Reihe von Messmethoden für diese Anteile herausgearbeitet, sowie Minderungsmöglichkeiten für die dynamischen Radlasten und für die Erschütterungen in der Umgebung von Bahnlinien zusammengestellt und bewertet. T3 - BAM Forschungsberichtreihe - 243 KW - Fahrzeugschwingungen KW - Fahrwegnachgiebigkeit KW - Dynamische Radlasten KW - Simultanmessungen KW - Bodenerschütterungen KW - Feste Fahrbahn KW - Brückengleis KW - Fahrgeschwindigkeit PY - 2001 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-2073 SN - 978-3-89701-565-X SN - 0938-5533 VL - 243 SP - 1 EP - 168 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-207 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Auersch, Lutz T1 - Fundamentschwingungen und Wellenausbreitung bei inhomogenen Böden – Beiträge zur Dynamik der Verkehrssysteme N2 - Dieser Bericht gliedert sich in drei Abschnitte, in denen der Einfluß inhomogener Böden auf die Dynamik von Verkehrssystemen untersucht wird. In erster Linie werden dabei geschichtete Böden behandelt, für die ein Rechenverfahren entwickelt wurde. Als elementares Ergebnis werden die Wellenfelder geschichteter Böden bei einer punktförmigen Belastung dargestellt. Mit diesen Punktlastlösungen können dann die Schwingungen von starren oder flexiblen Strukturen auf geschichteten Böden berechnet werden. Es wird die dynamische Steifigkeit und Dämpfung starrer Fundamentflächen dargestellt, an der das stark frequenzabhängige Verhalten geschichteter Böden besonders deutlich wird. T3 - BAM Forschungsberichtreihe - 226 KW - Dynamik KW - Fundamentschwingungen KW - Wellenausbreitung KW - Geschichter Boden KW - Schichtresonanz KW - Schiffstoß KW - Brückenpfeiler KW - Schienenverkehr KW - Gleisschwingungen KW - Achslasten KW - Erschütterungen PY - 1998 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-2246 SN - 978-3-89701-161-1 SN - 0938-5533 VL - 226 SP - 1 EP - 69 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-224 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Berechnung und Beeinflussung von Deckeneigenfrequenzen N2 - Es werden Erfahrungen zur Berechnung von Deckeneigenfrequenzen aus zahlreichen Projekten zusammengetragen. T2 - Projektbesprechung zum Hotelneubau CY - Berlin, Germany DA - 10.07.2019 KW - Deckeneigenfrequenzen PY - 2019 AN - OPUS4-49448 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -