TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir A1 - Müller, Roger T1 - Measurements on the vehicle-track interaction and the excitation of railway-induced ground vibration N2 - Two railway measurement campaigns have been performed in Germany and Switzerland which yield insight in the vehicle-track-soil interaction. The campaign in Germany has included simultaneous measurement of vehicle, track, and soil vibrations during train runs with 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h, and impulse measurements of the passenger car, three track sections and the soil. Two ballast tracks, one on the soil surface and one on a concrete bridge, have been investigated as well as a slab track in a tunnel. Ten different sites in Switzerland have been measured for soil properties and train-induced ground vibrations, which allow to determine the excitation forces of the railway traffic. New axle-box measurements at some of the Swiss sites have been analysed to get further experimental evidence. All these measurements have been evaluated to characterize the excitation processes. Relations between vehicle vibration and ground vibration can be observed. The vehicle vibrations, namely the accelerations of the wheelsets, yield the dynamic forces due to the passage over the irregularities of the vehicle and the track. The ground vibrations are correlated to these dynamic forces to a certain extent. Some mid-frequency ground vibration amplitudes, however, are higher than expected from the dynamic excitation forces. The experimental observations can be explained by an irregular response to the passage of the static loads, that means the passage of the static loads over an irregular ballast or soil. This correct understanding of the excitation processes is important for the prediction as well as for the mitigation of railway induced ground vibrations. T2 - X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017) KW - Vehicle-track interaction KW - Ground vibration KW - Track vibration KW - Railway measurement campaign KW - Axle box measurements PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-420889 SN - 1877-7058 VL - 199 SP - 2615 EP - 2620 PB - Elsevier CY - London AN - OPUS4-42088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Stengel, Dominik T1 - Measurements of downburst wind loading acting on an overhead transmission line in northern Germany N2 - Along an overhead transmission line in Northern Germany, a unique instrumentation of anemometers and force measurements is installed. Details of this test line with wind measurements along a horizontal axis are given. A recent event of a presumable downburst wind event is analyzed by means of available data and precedent works on thunderstorm analysis. The measured response of the conductors at the suspension tower is investigated and compared with time domain simulation of a finite element model. T2 - EURODYN 2017 CY - Rome, Italy DA - 10.09.2017 KW - Downburst KW - Overhead transmission line KW - Finite element method KW - Non-synoptic wind event PY - 2017 AN - OPUS4-42491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Emission of train-induced ground vibration — Prediction of axle-load spectra and its experimental verification N2 - Train passages induce forces on the track, train-induced vibrations propagate through the soil and excite neighbouring buildings. The emission, which is the first part of the prediction of vibrations near railway lines, is presented by focusing on the dynamic axle loads. The calculation of the axle loads is based on the vehicle-track-soil interaction. This interaction calculus utilises the dynamic stiffness of the vehicle (the inertia of the wheelset) and the dynamic stiffness of the track-soil system. Based on various time consuming finite-element boundary-element calculations, an approximate track-soil model has been established. The vehicle-track-soil analysis yields several transfer functions between the various geometric or stiffness irregularities and the axle loads of the train. Geometric irregularities of the vehicle (the wheels) and the track (rail surface and track alignment) are the simplest components. Geometric irregularities of the subsoil (trackbed irregularities) have to be transferred to effective irregularities at rail level. The bending stiffness of the track is filtering out the short-wavelength contribution. Stiffness irregularities occur due to random variations in the ballast or the subsoil, which must also be transferred to effective track irregularities, and due to the discrete rail support on sleepers. All necessary transfer functions for the prediction of axle-load spectra are presented as general formula and as specific graphs for differing vehicle and track parameters. The prediction method is applied to a ballast track and a slab track and compared with corresponding axle-box measurements. Moreover, ground vibration measurements at numerous sites are exploited for the axle-load spectra and the validation of the prediction method. All theoretical and experimental results confirm that the dynamic axle-load spectra have an approximate value of 1 kN per third of octave and increase with train speed, track stiffness and around the vehicle-track resonance. KW - Train induced ground vibration KW - Prediction KW - Emission KW - Axle-load spectra KW - Experimental verification PY - 2017 U6 - https://doi.org/10.20855/ijav.2017.22.1453 SN - 1027-5851 VL - 22 IS - 1 SP - 74 EP - 83 PB - Institute of Acoustics and Vibration CY - Auburn, USA AN - OPUS4-39445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - Dynamic testing of tracks and track sites before and after construction, after damage and after repair N2 - The Federal Institute of Material Research and Testing (BAM) has collected some experience with the testing of damaged, repaired and newly constructed railway tracks. The experimental methods are hammer testing of the track at different positions, hammer testing of the soil, measurement of train passages, and in all cases, measurements with geophones at different positions. The measured signals are evaluated for wave velocities (dispersion of the soil or the track-soil system), for transfer functions (transfer admittances of the soil, compliances of the track in amplitude and phase), and one-third octave band spectra of the track response to hammer and train excitation. These methods are applied at different stages of the track construction. Before track construction, wave velocities and transfer functions of the sub-soil can indicate problems with soft soils. After track construction, a check of the acceptable state of the track can be done by comparison of many excitation positions and track sites. After a track damage (a lose sleeper or a lose plate of a slab track) and after its repair, the sensitivity of the different measurement quantities to different track errors and the achieved improvement of the repair can be determined. The contribution shows examples of all these track situations. T2 - First International Conference on Rail Transportation CY - Chengdu, China DA - 10.7.2017 KW - Track damage KW - Dynamic testing KW - Hammer tests KW - Train passages PY - 2017 SP - 1 EP - 9 PB - Southwest Jiaotong University CY - Chengdu, China AN - OPUS4-42090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Zhu, Shaocheng T1 - Dynamic testing of track damage before and after construction, after damage and after repair N2 - The Federal Institute of Material Research and Testing (BAM) has collected some experience with the testing of damaged, repaired and newly constructed railway tracks. The experimental methods are hammer testing of the track at different positions, hammer testing of the soil, measurement of train passages, and in all cases, measurements with geophones at different positions. The measured signals are evaluated for wave velocities (dispersion of the soil or the track-soil system), for transfer functions (transfer admittances of the soil, compliances of the track in amplitude and phase), and one-third octave band spectra of the track response to hammer and train excitation. These methods are applied at different stages of the track construction. Before track construction, wave velocities and transfer functions of the sub-soil can indicate problems with soft soils. After track construction, a check of the acceptable state of the track can be done by comparison of many excitation positions and track sites. After a track damage (a lose sleeper or a lose plate of a slab track) and after its repair, the sensitivity of the different measurement quantities to different track errors and the achieved improvement of the repair can be determined. The contribution shows examples of all these track situations T2 - Int. Conf. on Rail Transportation CY - Chengdu, China DA - 10.07.2017 KW - Track damage KW - Dynamic testing KW - Hammer tests KW - Train passages PY - 2017 AN - OPUS4-42490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -