TY - JOUR A1 - Auersch, Lutz T1 - Dynamic plate-soil interaction - finite and infinite, flexible and rigid plates on homogeneous, layered or Winkler soil N2 - An integral method to calculate the solution of a homogeneous or layered soil due to a harmonic point load is described. An infinite plate at the surface of the soil can be introduced in this integration in wavenumber domain, too. Finite structures on the soil are calculated by a combined finite element and boundary element method, which makes use of the point load solution of the soil. The compliance functions for a vertical point load and some vibration modes are calculated for realistic parameters of the plate and the soil and for a wide range of frequencies. The influence of the stiffness of the soil and the foundation is investigated, showing that the soil mainly affects the low-frequent response whereas the structural properties are more important at higher frequencies. A rigid approximation of flexible plates is only found at low frequencies, if the elastic length is used as the radius of a rigid disk. At higher frequencies, a characteristic behaviour of the flexible plate of approximately is observed, what is in clear contrast to the compliance of rigid foundations. A plate on a visco-elastic support (Winkler soil) shows similar displacements as a plate on a homogeneous half-space, but the maximal stresses between the plate and the soil are considerably smaller which is found to be more realistic for a plate on a layered soil. For practical applications, a normalized diagram and some explicit formulas of the exact and the approximate solutions of an infinite plate on a homogeneous half-space are given, which is a useful model to represent the soil-structure interaction of flexible foundations. PY - 1996 U6 - https://doi.org/10.1016/0267-7261(95)00021-6 SN - 0261-7277 SN - 0267-7261 VL - 15 IS - 1 SP - 51 EP - 59 PB - Elsevier Science CY - Amsterdam AN - OPUS4-11580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Vehicle-track-interaction and soil dynamics T2 - 15th IAVSD Symposium Dynamics of Vehicles on Roads and Tracks CY - Budapest, Hungary DA - 1997-08-25 PY - 1998 SN - 0042-3114 VL - 29 SP - 553 EP - 558, Supplement PB - Taylor & Francis CY - Basingstoke, Hants. AN - OPUS4-11585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir A1 - Schmid, Wolfgang A1 - Rücker, Werner T1 - Erschütterungen im Bauwesen: Messergebnisse an verschiedenen Gebäuden und eine einfache Berechnung von Fundament-, Wand- und Deckenschwingungen (Teil 1) PY - 2004 SN - 0005-6650 SN - 1436-4867 IS - 79 SP - 185 EP - 192 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-11507 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir A1 - Schmid, Wolfgang A1 - Rücker, Werner T1 - Erschütterungen im Bauwesen: Messergebnisse an verschiedenen Gebäuden und eine einfache Berechnung von Fundament-, Wand- und Deckenschwingungen (Teil 2) PY - 2004 SN - 0005-6650 SN - 1436-4867 SP - 291 EP - 299 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-11508 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rücker, Werner A1 - Auersch, Lutz T1 - Praxisgerechtes Prognoseverfahren für Eisenbahnerschütterungen PY - 2005 SN - 0722-6241 VL - 24 IS - Sonderausgabe SP - 76 EP - 80 PB - Bauverlag CY - Gütersloh AN - OPUS4-11911 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Dynamics of the railway track and the underlying soil: the boundary-element solution, theoretical results and their experimental verification PY - 2005 SN - 0042-3114 VL - 43 IS - 9 SP - 671 EP - 695 PB - Taylor & Francis CY - Basingstoke, Hants. AN - OPUS4-11575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The excitation of ground vibration by rail traffic: theory of vehicle-track-soil interaction and measurements on high-speed lines N2 - This article presents an integrated model for the computation of vehicle–track interaction and the ground vibrations of passing trains. A combined finite element and boundary element method is used to calculate the dynamic compliance of the track on realistic soil whereas multi-body models are used for the vehicle. The dynamic stiffness of the vehicle and that of the track are combined to calculate the dynamic axle loads due to the irregularities of the vehicle and the track as well as those due to sleeper passing excitation. These loads serve as input for the calculation of ground vibration near railway lines in the time and frequency domains. The theoretical methods and results have been proven by experiments in several respects and at several instances. First, on the occasion of the test and record runs of the Intercity Experimental, there was a very good quality of the vehicle and of the newly built track so that the deterministic parts of the excitation—the static load and the sleeper-passing component—could clearly be identified, the first being of minor importance apart from the track. Second, simultaneous measurements of the vehicle, the track and the soil at three different track situations were performed where we could verify the different parts of the stochastic excitation and their importance for the ground vibrations. The irregularities of the vehicle are dominant at high frequencies whereas the irregularities of the track are more important at lower frequencies. The comparison of the theory and the measurements also points to the phenomena of the vehicle–track resonance and the scattering of the quasi-static axle impulses by randomly varying soil. PY - 2005 U6 - https://doi.org/10.1016/j.jsv.2004.06.017 SN - 0022-460X SN - 1095-8568 VL - 284 IS - 1-2 SP - 103 EP - 132 PB - Academic Press CY - London AN - OPUS4-11510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Dynamic axle loads on tracks with and without ballast mats - numerical results of three-dimensional vehicle-track-soil models N2 - Ballast mats are an efficient measure to reduce the vibrations near railway lines. The vehicle-track system gets a low eigenfrequency due to the insertion of an elastic ballast mat under the ballast. For frequencies higher than this low vehicle-track eigenfrequency, the forces, which are generating the vibration of the soil, are considerably reduced. In this contribution, a combined finite-element boundary-matrix method is used to calculate a number of completely three-dimensional track models with and without ballast mats. The influence of the important parameters such as the stiffness of the ballast mat, the unsprung vehicle mass, the mass of the track, and the stiffness of the subsoil is investigated. The numerical results are presented as the transfer functions of the total force that is acting on the soil and generating the vibration of the environment. The effectiveness of ballast mats is achieved by division of two of these force functions. The general tendencies for this insertion loss are discussed and a comparison with measurements is given. To come to an improved practical tool for the design of ballast-mat tracks, the finite-element method results are approximated by a simple two-dimensional model of which the solution is given explicitly. KW - Railway track KW - Track dynamic KW - Ballast mat KW - Vibration isolation KW - Insertion loss KW - Finite-element method KW - Track-soil interaction KW - Vehicle-track interaction PY - 2006 U6 - https://doi.org/10.1243/09544097F00105 SN - 0954-4097 VL - 220 IS - 2 SP - 169 EP - 183 PB - Institution of Mechanical Engineers CY - London AN - OPUS4-13723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Schottergleis und Feste Fahrbahn N2 - Seit 30 Jahren betreibt die Bundesanstalt für Materialprüfung intensive Forschung auf dem Gebiet der Eisenbahndynamik unter Einbeziehung aller Systemkomponenten. Das umfasst theoretisch/numerische Arbeiten, Feldmessungen und Laborversuche zu Fragen wie die Erschütterungs- und Körperschallweiterleitung durch den natürlichen Boden, das Schwingungsverhalten der verschiedenen Fahrwege auf dem Untergrund, die dynamischen Kräfte aus der Wechselwirkung zwischen dem Fahrzeug und dem Fahrweg sowie die Gleislageentwicklung unter dieser Belastung bei verschiedenen Fahrwegen. Es werden Ergebnisse zu den dynamischen Kräften bei Geschwindigkeiten von 40 bis 300 km/h [1] und zum Vergleich der Festen Fahrbahn mit dem Schottergleis [2] vorgestellt. PY - 2006 SN - 0013-2810 VL - 57 IS - 4 SP - 8 EP - 18 PB - Eurailpress Tetzlaff-Hestra CY - Hamburg AN - OPUS4-14047 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Ground vibration due to railway traffic - The calculation of the effects of moving static loads and their experimental verification N2 - The propagation of waves through homogeneous or layered soil is calculated based on half-space theory. The moving dynamic loads of a train are approximated by fixed dynamic loads and the wave field can be calculated if the spectrum of the dynamic train loads is known. In addition to this dynamic wave field, there are three different components at three different frequency ranges which are caused by the passage of the static loads: • the regular static component at low frequencies, • the irregular static component at medium frequencies, • the sleeper-passing component at high frequencies. For each of these components, an approximate solution is presented. The calculated wave field is compared with measurements of different trains at different sites. The measurement of impulse and harmonic point load excitation verifies the soil dynamic base of the method. PY - 2006 U6 - https://doi.org/10.1016/j.jsv.2005.08.059 SN - 0022-460X SN - 1095-8568 VL - 293 IS - 3-5 SP - 599 EP - 610 PB - Academic Press CY - London AN - OPUS4-14049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -