TY - CONF A1 - Auersch, Lutz ED - De Roeck, G. ED - Degrande, G. ED - Lombaert, G. ED - Müller, G. T1 - The dynamic force transfer of slab tracks and floating slab tracks and the corresponding ground vibration T2 - EURODYN 2011 - 8th International conference on structural dynamics CY - Leuven, Belgium DA - 2011-07-04 KW - Railway track KW - Slab track KW - Floating slab track KW - Track-soil interaction KW - Force transfer KW - Ground vibration PY - 2011 SN - 978-90-760-1931-4 SP - 820 EP - 827 AN - OPUS4-24556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - Vibration measurements for the control of damaged and repaired railway tracks N2 - The damage detection and repair control have become important tasks for ballast and slab tracks. Measurements which compare the damaged and the repaired status of the same track section at different times, or which compare a damaged and an intact track section at the same time, have been successfully performed at some sites in Germany with slab tracks and ballast tracks and compared with the theoretical behaviour of intact and damaged tracks. The loss of contact between the sleeper and the plate, between the plate and the base layer, and some problems with soft or weakened soil have been analysed. The observed results, changes in the time histories of displacements and velocities due to train passages and in the transfer functions (compliances) due to hammer impacts, are encouraging that these measurements can be used to detect track damage. In addition, calculations with the combined finite-element boundary-element method have been used to confirm the conclusions about intact or damaged railway tracks. T2 - 7th International Symposium on Environmental Vibration and Transportation Geodynmaics CY - Hangzhou, China DA - 28.10.2016 KW - Railway track KW - Slab track KW - Ballast track KW - Track-soil interaction KW - Field tests KW - Track damage monitoring KW - Finite element method KW - Boundary element method PY - 2016 SP - 3 EP - 19 AN - OPUS4-38261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Vehicle-Track-Soil Interaction of Isolated, Un-isolated and Damaged Railway Tracks N2 - This article deals with two topics of vehicle-track-soil interaction, the mitigation of railway induced ground vibration by soft track elements, and the identification of track damage. Theoretical results have been achieved by a combined finite-element boundary-element method (FEBEM). The theoretical results are confronted with measurements at four sites. Improved mitigation effects have been found for soft rail pads under heavy sleepers. The insertion loss, however, can be too optimistic if a strong vehicle track resonance occurs for the un-isolated reference track. Two measurement sites show this strong vehicle-track resonance at about 80 Hz, which has been approximated by using the results of a wide parameter study including the rail pad, ballast, and soil stiffness, as well as the ballast model and the soil layering. – The detection of slab track damage is mainly based on the differences of the receptance or compliance functions. Theoretical results have been confirmed by measurements at one site where a loss of contact between track plate and base layer was visible. Measurements at a second site with a hidden damage have been compared with the theoretical results of a loose sleeper. The differences between intact (or repaired) and damaged tracks are strong enough to encourage the further development of this method for the identification of track damages. KW - Railway track KW - Track-soil interaction KW - Ground vibration KW - Mitigation KW - Under-sleeper pads KW - Track damage monitoring PY - 2020 U6 - https://doi.org/10.4203/ijrt.6.3.2 SN - 2049-5358 VL - 2 IS - 20 SP - 21 EP - 49 PB - Saxe-Coburg Publications CY - London AN - OPUS4-51257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Track-soil dynamics – calculation and measurement of damaged and repaired slab tracks N2 - The damage detection and repair control have become important tasks for ballast and slab tracks. Measurements which compare the damaged and the repaired status of the same track section at different times, or which compare a damaged and an intact track section at the same time, have been successfully performed at some sites in Germany. The loss of contact between the sleeper and the track plate, between the track plate and the base plate, and between the base plate and the base layer have been analysed. The soil properties of each site have been measured and have been used to establish realistic track-soil models. Theoretical results of the wavenumber domain and the finite-element boundary element method have been compared with the experimental results. The observed experimental and theoretical results, changes in the time histories of displacements and velocities due to train passages and in the transfer functions (receptances) due to hammer impacts, are encouraging that these measurements can be used to detect track damage. KW - Railway track KW - Slab track KW - Track-soil interaction KW - Field tests KW - Track damage KW - Monitoring KW - Finite element method KW - Boundary element method PY - 2017 U6 - https://doi.org/10.1016/j.trgeo.2017.06.003 SN - 2214-3912 VL - 12 IS - September SP - 1 EP - 14 PB - Elsevier CY - London AN - OPUS4-42581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -