TY - JOUR A1 - Auersch, Lutz T1 - Simple and fast prediction of train-induced track forces, ground and building vibrations N2 - A simple and fast prediction scheme is presented for train induced ground and building vibrations. Simple models such as (1-dimensional) transfer matrices are used for the vehicle-track-soil interaction and for the building-soil interaction. The wave propagation through layered soils is approximated by a frequency-dependent homogeneous half-space. The prediction is divided into the parts “emission” (excitation by railway traffic), “transmission” (wave propagation through the soil) and “immission” (transfer into a building). The link between the modules is made by the excitation force between emission and transmission, and by the free-field vibration between transmission and immission. All formula for the simple vehicle-track, soil and building models are given in this article. The behaviour of the models is demonstrated by typical examples, that is the mitigation of train vibrations by elastic track elements, the low- and high-frequency cut-offs characteristic for layered soils, and the interacting soil, wall and floor resonances of multi-storey buildings. It is shown that the results of the simple prediction models can well represent the behaviour of the more time-consuming detailed models, the finite-element boundary-element models of the track, the wavenumber integrals for the soil, and the three-dimensional finite-element models of the building. In addition, measurement examples are given for each part of the prediction confirming that the methods provide reasonable results. As the prediction models are fast in calculation, many predictions can be done, for example to assess the environmental effect along a new railway line. The simple models have the additional advantage that the user needs to know only a minimum of parameters. So, the prediction is fast and user-friendly, but also theoretically and experimentally well-founded. KW - Railway induced vibration KW - Ground vibration KW - Layered soil KW - Building response KW - Excitation forces KW - Track and vehicle irregularities PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513340 SN - 2662-4745 VL - 28 IS - 3 SP - 232 EP - 250 PB - Springer AN - OPUS4-51334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Train induced ground vibrations: different amplitude-speed relations for two layered soils N2 - Ground vibrations created by running high-speed trains at speeds between 100 and 320 km/h are calculated in detail using transfer functions to model the effects of the moving loads. These transfer functions for layered soils are obtained by integration in the wavenumber domain. The train-induced vibrations in a soil that is considered to consist of single layers of two slightly different soils are analysed for different excitations: for their spectra, attenuation laws and amplitude-speed relations. An important mid-frequency component is shifted through the cut-on region of the layered soil with an increase in the train speed. The cut-on frequency divides the response of the layered soil into a low-frequency low-amplitude range and a high-frequency high-amplitude range. This leads to completely different train speed dependencies for the two soil layers with strongly increasing amplitudes around the cut-on frequency and almost constant amplitudes beyond this frequency. All calculated results closely agree with ground vibration measurements at two corresponding sites, especially if the mid-frequency component is calculated by axle impulses. KW - Ground vibration KW - Layered soil KW - Wavenumber integrals KW - Moving load KW - Excitation forces KW - High-speed trains KW - Measured railway vibrations PY - 2012 U6 - https://doi.org/10.1177/0954409712437305 SN - 0954-4097 VL - 226 IS - 5 SP - 469 EP - 488 PB - Sage Publ. CY - London AN - OPUS4-31162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -